import sys readline=sys.stdin.readline def Hadamard(polynomial,n,mod=0,inverse=False): polynomial_=[x for x in polynomial]+[0]*((1<<n)-len(polynomial)) for bit in range(n): for i in range(1<<n): ii=i^(1<<bit) if i>ii: continue polynomial_[i],polynomial_[ii]=polynomial_[i]+polynomial_[ii],polynomial_[i]-polynomial_[ii] if mod: polynomial_[i]%=mod polynomial_[ii]%=mod if inverse: if mod: inve_2=pow((mod+1)//2,n) for i in range(1<<n): polynomial_[i]*=inve_2 polynomial_[i]%=mod else: pow_2=pow(2,n) for i in range(1<<n): polynomial_[i]/=pow_2 return polynomial_ def XOR_Convolution(polynomial0,polynomial1,mod=0): n=(max(len(polynomial0),len(polynomial1))-1).bit_length() Hadamard_polynomial0=Hadamard(polynomial0,n,mod=mod) Hadamard_polynomial1=Hadamard(polynomial1,n,mod=mod) if mod: convolution=[x*y%mod for x,y in zip(Hadamard_polynomial0,Hadamard_polynomial1)] else: convolution=[x*y for x,y in zip(Hadamard_polynomial0,Hadamard_polynomial1)] convolution=Hadamard(convolution,n,mod=mod,inverse=True) return convolution N,K,X,Y=map(int,readline().split()) Y+=1 A=list(map(int,readline().split())) mod=998244353 dp=[[0]*(1<<10) for i in range(1<<10)] for a in A: dp[a][a]=1 for n in range(1,N): prev=dp dp=[[0]*(1<<10) for i in range(1<<10)] cnt=[0]*(1<<10) for i in range(1<<10): for j in range(1<<10): cnt[j]+=prev[i][j] cnt[j]%=mod for a in A: for j in range(1<<10): dp[a][a^j]+=cnt[j]-prev[a][j] dp[a][a^j]%mod ans=0 for i in range(1<<10): for j in range(X,Y): ans+=dp[i][j] ans%=mod print(ans)