#include using namespace std; using ll = long long; /** * @brief Link Cut Tree * @docs docs/link-cut-tree.md */ template< typename T, typename F, typename S > struct LinkCutTree { private: F f; S s; struct Node { Node *l, *r, *p; T key, sum; bool rev; size_t sz; explicit Node(const T &v) : key(v), sum(v), sz(1), rev(false), l(nullptr), r(nullptr), p(nullptr) {} bool is_root() const { return not p or (p->l != this and p->r != this); } }; public: using NP = Node *; private: NP update(NP t) { t->sz = 1; t->sum = t->key; if(t->l) t->sz += t->l->sz, t->sum = f(t->l->sum, t->sum); if(t->r) t->sz += t->r->sz, t->sum = f(t->sum, t->r->sum); return t; } void rotr(NP t) { NP x = t->p, y = x->p; if((x->l = t->r)) t->r->p = x; t->r = x, x->p = t; update(x), update(t); if((t->p = y)) { if(y->l == x) y->l = t; if(y->r == x) y->r = t; update(y); } } void rotl(NP t) { NP x = t->p, y = x->p; if((x->r = t->l)) t->l->p = x; t->l = x, x->p = t; update(x), update(t); if((t->p = y)) { if(y->l == x) y->l = t; if(y->r == x) y->r = t; update(y); } } void toggle(NP t) { swap(t->l, t->r); t->sum = s(t->sum); t->rev ^= true; } void push(NP t) { if(t->rev) { if(t->l) toggle(t->l); if(t->r) toggle(t->r); t->rev = false; } } void splay(NP t) { push(t); while(not t->is_root()) { NP q = t->p; if(q->is_root()) { push(q), push(t); if(q->l == t) rotr(t); else rotl(t); } else { NP r = q->p; push(r), push(q), push(t); if(r->l == q) { if(q->l == t) rotr(q), rotr(t); else rotl(t), rotr(t); } else { if(q->r == t) rotl(q), rotl(t); else rotr(t), rotl(t); } } } } public: LinkCutTree(const F &f, const S &s) : f(f), s(s) {} NP alloc(const T &v = T()) { return new Node(v); } vector< NP > build(vector< T > &vs) { vector< NP > nodes(vs.size()); for(int i = 0; i < (int) vs.size(); i++) { nodes[i] = alloc(vs[i]); } return nodes; } NP expose(NP t) { NP rp = nullptr; for(NP cur = t; cur; cur = cur->p) { splay(cur); cur->r = rp; update(cur); rp = cur; } splay(t); return rp; } void evert(NP t) { expose(t); toggle(t); push(t); } void link(NP child, NP parent) { if(is_connected(child, parent)) { throw runtime_error("child and parent must be different connected components"); } if(child->l) { throw runtime_error("child must be root"); } child->p = parent; parent->r = child; update(parent); } void cut(NP child) { expose(child); NP parent = child->l; if(not parent) { throw runtime_error("child must not be root"); } child->l = nullptr; parent->p = nullptr; update(child); } bool is_connected(NP u, NP v) { expose(u), expose(v); return u == v or u->p; } NP lca(NP u, NP v) { if(not is_connected(u, v)) return nullptr; expose(u); return expose(v); } NP get_kth(NP x, int k) { expose(x); while(x) { push(x); if(x->r && x->r->sz > k) { x = x->r; } else { if(x->r) k -= x->r->sz; if(k == 0) { splay(x); return x; } k -= 1; x = x->l; } } return nullptr; } const T &query(NP u) { expose(u); return u->sum; } const T &query(NP u, NP v) { evert(u); return query(v); } void set_key(NP t, T v) { expose(t); t->key = v; update(t); } }; template< typename T, typename F, typename S > LinkCutTree< T, F, S > get_link_cut_tree(const F &f, const S &s) { return {f, s}; } struct dsu { public: int csz; dsu() : _n(0) {} dsu(int n) : _n(n), csz(n), parent_or_size(n, -1) {} int merge(int a, int b) { assert(0 <= a && a < _n); assert(0 <= b && b < _n); int x = leader(a), y = leader(b); if (x == y) return x; if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y); csz--; parent_or_size[x] += parent_or_size[y]; parent_or_size[y] = x; return x; } bool same(int a, int b) { assert(0 <= a && a < _n); assert(0 <= b && b < _n); return leader(a) == leader(b); } int leader(int a) { assert(0 <= a && a < _n); if (parent_or_size[a] < 0) return a; return parent_or_size[a] = leader(parent_or_size[a]); } int size(int a) { assert(0 <= a && a < _n); return -parent_or_size[leader(a)]; } std::vector> groups() { std::vector leader_buf(_n), group_size(_n); for (int i = 0; i < _n; i++) { leader_buf[i] = leader(i); group_size[leader_buf[i]]++; } std::vector> result(_n); for (int i = 0; i < _n; i++) { result[i].reserve(group_size[i]); } for (int i = 0; i < _n; i++) { result[leader_buf[i]].push_back(i); } result.erase( std::remove_if(result.begin(), result.end(), [&](const std::vector& v) { return v.empty(); }), result.end()); return result; } private: int _n; // root node: -1 * component size // otherwise: parent std::vector parent_or_size; }; int main() { ios::sync_with_stdio(false); cin.tie(0); ll N, X, Q; cin >> N >> X >> Q; auto add = [](ll a, ll b) { return a + b; }; auto s = [](ll a) { return a; }; auto lct = get_link_cut_tree(add, s); vector A(N + Q); vector> B(N); for(int i = 0; i < N; i++){ B[i] = make_tuple(0, i, i); } dsu uf(N); auto vs = lct.build(A); auto update = [&](int x, int y){ int r = uf.merge(x, y); auto mx = max(B[x], B[y]); mx = max(mx, make_tuple(lct.query(vs[get<1>(B[x])], vs[get<1>(B[y])]), get<1>(B[x]), get<1>(B[y]))); mx = max(mx, make_tuple(lct.query(vs[get<1>(B[x])], vs[get<2>(B[y])]), get<1>(B[x]), get<2>(B[y]))); mx = max(mx, make_tuple(lct.query(vs[get<2>(B[x])], vs[get<1>(B[y])]), get<2>(B[x]), get<1>(B[y]))); mx = max(mx, make_tuple(lct.query(vs[get<2>(B[x])], vs[get<2>(B[y])]), get<2>(B[x]), get<2>(B[y]))); B[r] = mx; }; int type, x, u, v, w; for(int i = 0; i < Q; i++){ cin >> type; if(type == 1){ cin >> v >> w; int s = N + i, x = uf.leader(v), y = uf.leader(X); lct.evert(vs[v]); lct.link(vs[v], vs[s]); lct.evert(vs[X]); lct.link(vs[X], vs[s]); lct.set_key(vs[s], w); update(x, y); }else if(type == 2){ cin >> u >> v; if(!uf.same(u, v)){ cout << -1 << '\n'; continue; } ll d = lct.query(vs[u], vs[v]); (X += d) %= N; cout << d << '\n'; }else if(type == 3){ cin >> v; cout << get<0>(B[uf.leader(v)]) << '\n'; }else{ cin >> v; (X += v) %= N; } } }