import sys sys.setrecursionlimit(200005) int1 = lambda x: int(x)-1 pDB = lambda *x: print(*x, end="\n", file=sys.stderr) p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr) def II(): return int(sys.stdin.readline()) def LI(): return list(map(int, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def LI1(): return list(map(int1, sys.stdin.readline().split())) def LLI1(rows_number): return [LI1() for _ in range(rows_number)] def SI(): return sys.stdin.readline().rstrip() dij = [(0, 1), (-1, 0), (0, -1), (1, 0)] # dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)] inf = (1 << 63)-1 # inf = (1 << 31)-1 # md = 10**9+7 md = 998244353 def prime_factorization(a): pp, ee = [], [] if a & 1 == 0: pp += [2] ee += [0] while a & 1 == 0: a >>= 1 ee[-1] += 1 p = 3 while p**2 <= a: if a%p == 0: pp += [p] ee += [0] while a%p == 0: a //= p ee[-1] += 1 p += 2 if a > 1: pp += [a] ee += [1] return pp, ee from functools import lru_cache @lru_cache(None) def f(a, n, m): if m == 1: return 0 if n == 0: return 1 pp,_=prime_factorization(m) d=m for p in pp:d=d*(p-1)//p return pow(a, f(a, n-1, d), m) a, n, m = LI() print(f(a, n, m))