import sys

sys.setrecursionlimit(200005)
int1 = lambda x: int(x)-1
pDB = lambda *x: print(*x, end="\n", file=sys.stderr)
p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr)
def II(): return int(sys.stdin.readline())
def LI(): return list(map(int, sys.stdin.readline().split()))
def LLI(rows_number): return [LI() for _ in range(rows_number)]
def LI1(): return list(map(int1, sys.stdin.readline().split()))
def LLI1(rows_number): return [LI1() for _ in range(rows_number)]
def SI(): return sys.stdin.readline().rstrip()

dij = [(0, 1), (-1, 0), (0, -1), (1, 0)]
# dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]
inf = (1 << 63)-1
# inf = (1 << 31)-1
# md = 10**9+7
md = 998244353

def prime_factorization(a):
    pp, ee = [], []
    if a & 1 == 0:
        pp += [2]
        ee += [0]
        while a & 1 == 0:
            a >>= 1
            ee[-1] += 1
    p = 3
    while p**2 <= a:
        if a%p == 0:
            pp += [p]
            ee += [0]
            while a%p == 0:
                a //= p
                ee[-1] += 1
        p += 2
    if a > 1:
        pp += [a]
        ee += [1]
    return pp, ee

from functools import lru_cache

@lru_cache(None)
def f(a, n, m):
    if m == 1: return 0
    if n == 0: return 1
    pp,_=prime_factorization(m)
    d=m
    for p in pp:d=d*(p-1)//p
    return pow(a, f(a, n-1, d), m)

a, n, m = LI()
print(f(a, n, m))