#include #include #include #include #include #include using namespace std; using i32 = int; using u32 = unsigned int; using i64 = long long; using u64 = unsigned long long; #define rep(i,n) for(int i=0; i<(int)(n); i++) const i64 INF = 1001001001001001001; using Modint = atcoder::static_modint<998244353>; int GCD(int a, int b){ return b ? GCD(b,a%b) : a; } void CoordCompress(vector& ar){ vector T = ar; sort(T.begin(), T.end()); for(auto& a : ar) a = lower_bound(T.begin(), T.end(), a) - T.begin(); } bool CollideTrivial(int H, int W, int K, vector X, vector Y, vector D){ map Xset, Yset; rep(k,K){ switch (D[k]) { case 0: { Yset[Y[k]] |= 1; } break; case 1: { Xset[X[k]] |= 1; } break; case 2: { Yset[Y[k]] |= 2; } break; case 3: { Xset[X[k]] |= 2; } break; } } for(auto q : Xset) if(q.second == 3) return true; for(auto q : Yset) if(q.second == 3) return true; return false; } void Unique(vector& A){ sort(A.begin(), A.end()); A.erase(unique(A.begin(), A.end()), A.end()); } Modint Alternate(int H, int W, int K, vector X, vector Y, vector D, vector Dcnt){ if(H%2 != 0 || W%2 != 0) return 0; vector Xset; vector Yset; int en = 3; rep(k,K){ switch (D[k]) { case 0: { Yset.push_back(Y[k]); } break; case 1: { Xset.push_back(X[k]); } break; case 2: { Yset.push_back(Y[k]); } break; case 3: { Xset.push_back(X[k]); } break; } int ty = 0; if(D[k] & 1) ty ^= 1; ty ^= X[k] & 1; ty ^= Y[k] & 1; en &= ~(1 << ty); } if(en == 0) return 0; Unique(Yset); Unique(Xset); long long powC = 0; powC += H; powC += W; powC -= Yset.size(); powC -= Xset.size(); Modint ans = Modint(2).pow(powC); if(Dcnt[0] == 0 && Dcnt[1] == 0) ans -= 1; if(Dcnt[1] == 0 && Dcnt[2] == 0) ans -= 1; if(Dcnt[2] == 0 && Dcnt[3] == 0) ans -= 1; if(Dcnt[3] == 0 && Dcnt[0] == 0) ans -= 1; if(en == 3) ans *= 2; return ans; } Modint Diagonal(int H, int W, int K, vector X, vector Y, vector D, vector Dcnt){ // into G x G grid int G = GCD(H, W); for(int& x : X) x %= G; for(int& y : Y) y %= G; Modint ans = 0; if(G == 1) return 0; rep(t,2){ // reverse y-axis for(int& y : Y) y = G-1-y; swap(Dcnt[1], Dcnt[3]); for(int& d : D) if(d%2 == 1) d ^= 2; map lineSet; rep(k,K){ int line = (X[k] + Y[k]) % G; lineSet[line] |= 1 << D[k]; } // instructed to 2 direction in a same group (invalid) bool ok = true; for(auto a : lineSet){ int cnt = 0; rep(d,4) cnt += (a.second >> d) & 1; if(cnt > 1){ ok = false; break; } } if(!ok) continue; Modint tmp = Modint(2).pow(G - lineSet.size()); if(Dcnt[0] == 0 && Dcnt[1] == 0){ ans += tmp; // no left down if(Dcnt[2] == K) ans -= 1; // all same direction if(Dcnt[3] == K) ans -= 1; // all same direction } if(Dcnt[2] == 0 && Dcnt[3] == 0){ ans += tmp; // no right up if(Dcnt[0] == K) ans -= 1; // all same direction if(Dcnt[1] == K) ans -= 1; // all same direction } } return ans; } Modint Parallel(int H, int W, int K, vector X, vector Y, vector D, vector Dcnt){ Unique(X); Unique(Y); Modint ans = 0; // no left right if(Dcnt[0] == 0 && Dcnt[2] == 0){ ans += Modint(2).pow(H - X.size()); } // no up down if(Dcnt[1] == 0 && Dcnt[3] == 0){ ans += Modint(2).pow(W - Y.size()); } return ans; } Modint DivBy4Case(int H, int W, int K, vector X, vector Y, vector D){ if(H % 4 != 0) return 0; if(W % 4 != 0) return 0; for(int& x : X) x %= 4; for(int& y : Y) y %= 4; int mode[4][4] = {}; rep(i,4) rep(j,4) mode[i][j] = -1; rep(k,K) mode[Y[k]][X[k]] = D[k]; rep(k,K) if(mode[Y[k]][X[k]] >= 0 && mode[Y[k]][X[k]] != D[k]) return 0; Modint ans = 0; vector> pat1V = { {1,0,0,0}, {0,1,0,0}, {0,0,1,0}, {0,0,0,1} }; rep(y,4) rep(x,4) pat1V[y][x] += (pat1V[y][x] ? x : y) % 2 * 2; rep(t0,2){ rep(t1,2){ rep(dy,2) rep(dx,4){ int pat1[4][4] = {}; rep(y,4) rep(x,4) pat1[(y+dy)%4][(x+dx)%4] = pat1V[y][x]; bool ok = true; rep(i,4) rep(j,4) if(mode[i][j] >= 0 && mode[i][j] != pat1[i][j]) ok = false; if(ok) ans += 1; int B[4][4] = {}; rep(y,4) rep(x,4){ if(pat1[y][x] == 0) B[y][(x+3)%4] = 1; if(pat1[y][x] == 1) B[(y+3)%4][x] = 1; if(pat1[y][x] == 2) B[y][(x+1)%4] = 1; if(pat1[y][x] == 3) B[(y+1)%4][x] = 1; } } reverse(pat1V.begin(), pat1V.end()); rep(i,4) rep(j,4) if(pat1V[i][j] % 2 == 1) pat1V[i][j] ^= 2; } rep(i,4) rep(j,4) if(i> pat2V = { {1,1,0,0}, {1,1,0,0}, {0,0,1,1}, {0,0,1,1} }; rep(y,4) rep(x,4) pat2V[y][x] += (pat2V[y][x] ? x : y) % 2 * 2; rep(t1,2){ rep(dy,2) rep(dx,4){ int pat2[4][4] = {}; rep(y,4) rep(x,4) pat2[(y+dy)%4][(x+dx)%4] = pat2V[y][x]; bool ok = true; rep(i,4) rep(j,4) if(mode[i][j] >= 0 && mode[i][j] != pat2[i][j]) ok = false; if(ok) ans += 1; int B[4][4] = {}; rep(y,4) rep(x,4){ if(pat2[y][x] == 0) B[y][(x+3)%4] = 1; if(pat2[y][x] == 1) B[(y+3)%4][x] = 1; if(pat2[y][x] == 2) B[y][(x+1)%4] = 1; if(pat2[y][x] == 3) B[(y+1)%4][x] = 1; } } rep(i,4) rep(j,4) pat2V[i][j] ^= 2; } return ans; } // we can decide : // choose one of DU for each x // choose one of LR for each y // choose horizonal or vertical for each mass // to find patterns Modint testcase(){ // H is VERTICAL size ( x coord range, LR move range ) // W is HORIZONAL size ( y coord range, DU move range ) int H, W, K; cin >> H >> W >> K; vector X(K), Y(K), D(K); vector Dcnt(4); rep(k,K){ int x,y; char d; cin >> x >> y >> d; X[k] = x; Y[k] = y; // I mean, // bit 0 : 1=vertical, 0=horizonal // bit 1 : 1=increasing, 0=decreasing if(d == 'L') D[k] = 0; if(d == 'D') D[k] = 1; if(d == 'R') D[k] = 2; if(d == 'U') D[k] = 3; Dcnt[D[k]]++; } if(CollideTrivial(H,W,K,X,Y,D)) return 0; if(H == 1 && W == 1){ if(K == 0) return 4; return 1; } Modint ans = 0; ans += Alternate(H, W, K, X, Y, D, Dcnt); // 2x2 complex pattern but not Diagonal case ans += Diagonal(H, W, K, X, Y, D, Dcnt); // fixed direction in a diagonal, but not all same ans += Parallel(H, W, K, X, Y, D, Dcnt); // all moves are parallel to each other ans += DivBy4Case(H, W, K, X, Y, D); // 4x4 very complex case return ans; } int main(){ int T; cin >> T; rep(t,T) cout << testcase().val() << '\n'; return 0; } struct ios_do_not_sync{ ios_do_not_sync(){ ios::sync_with_stdio(false); cin.tie(nullptr); } } ios_do_not_sync_instance;