import sys # sys.setrecursionlimit(200005) int1 = lambda x: int(x)-1 pDB = lambda *x: print(*x, end="\n", file=sys.stderr) p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr) def II(): return int(sys.stdin.readline()) def LI(): return list(map(int, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def LI1(): return list(map(int1, sys.stdin.readline().split())) def LLI1(rows_number): return [LI1() for _ in range(rows_number)] def SI(): return sys.stdin.readline().rstrip() dij = [(0, 1), (-1, 0), (0, -1), (1, 0)] # dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)] inf = (1 << 63)-1 # inf = (1 << 31)-1 md = 10**9+7 # md = 998244353 def prime_factorization(a): pp, ee = [], [] if a & 1 == 0: pp += [2] ee += [0] while a & 1 == 0: a >>= 1 ee[-1] += 1 p = 3 while p**2 <= a: if a%p == 0: pp += [p] ee += [0] while a%p == 0: a //= p ee[-1] += 1 p += 2 if a > 1: pp += [a] ee += [1] return pp, ee a, n, m = LI() if a == 1: print(1) exit() if n == 0: print(1%m) exit() if m == 1: print(0) exit() pp, ee = prime_factorization(a) pe = {p: e for p, e in zip(pp, ee)} def tozero(m): res = 0 pp, ee = prime_factorization(m) for p, e in zip(pp, ee): if p not in pe: return -1, pp res = max(res, (e+pe[p]-1)//pe[p]) return res, [] def fm(n, m): if m == 1: return 0 if n == 0: return 1 lim, pp = tozero(m) if lim == -1: d = m for p in pp: d = d//p*(p-1) e = fm(n-1, d)+d return pow(a, e, m) e = f(n, lim) if e == lim: return 0 return pow(a, e, m) def f(n, lim): if n == 0: return 1 if lim >= a: return lim nlim = 0 p = 1 while nlim < lim: p *= a nlim += 1 e = f(n-1, nlim) if e >= nlim: return lim return pow(a, e) print(fm(n, m))