#include #include #define pub push_back #define eb emplace_back #define mp make_pair #define fi first #define se second #define rep(i, n) rep2(i, 0, n) #define rep2(i, m, n) for (ll i = m; i < (n); i++) #define per(i, b) per2(i, 0, b) #define per2(i, a, b) for (ll i = int(b) - 1; i >= int(a); i--) #define ALL(c) (c).begin(), (c).end() using namespace std; using namespace atcoder; using ll = long long; using dd = double; using Pll = pair; using vll = vector< ll>; using vdd = vector< dd>; using vvll = vector< vll>; using vvdd = vector; using vvvll = vector< vvll>; using vvvdd = vector; using vvvvll = vector; using vchar = vector< char>; using vvchar = vector; using mint = modint998244353; using mint2 = modint1000000007; using vmint = vector< mint>; using vmint2 = vector< mint2>; using vvmint = vector; using vvmint2 = vector; constexpr long long INF = (1LL << 60); constexpr double EPS = 1e-9; constexpr double PI = 3.141592653589; ////////////////////////////////////////////////////////// template bool chmax(T& a, const T& b) { if (a < b) { a = b; // aをbで更新 return true; } return false; } template bool chmin(T& a, const T& b) { if (a > b) { a = b; // aをbで更新 return true; } return false; } template T sq(T x) { return x * x; } std::string zfill(int n, const int width) { std::stringstream ss; ss << std::setw(width) << std::setfill('0') << n; return ss.str(); } struct S { mint a; int size; }; struct F { mint a, b; }; S op(S l, S r) { return S{ l.a + r.a, l.size + r.size }; } S e() { return S{ 0, 0 }; } S mapping(F l, S r) { return S{ r.a / l.a , r.size }; } F composition(F l, F r) { return F{ r.a * l.a, l.b }; } F id() { return F{ 1, 0 }; } int main() { //cout << fixed << setprecision(10); ios::sync_with_stdio(false); cin.tie(nullptr); ll N; cin >> N; vll P(N); rep(i, N) { cin >> P[i]; } mint ans = 0; fenwick_tree fen(N + 1); lazy_segtree seg(N + 1); rep(i, N) { mint sum = fen.sum(P[i], N + 1); sum *= pow_mod(2, N - 1, 998244353); ans += sum; fen.add(P[i], 1); S s2 = seg.prod(P[i], N + 1); mint sum2 = s2.a; sum2 *= pow_mod(2, N - 1, 998244353); ans -= sum2; seg.set(P[i], {1,0}); seg.apply(0, N + 1, F{ 2,0 }); } cout << ans.val() << endl; }