#include #include typedef long long int ll; typedef long double ld; using namespace std; using namespace atcoder; #define inf 1010000000 #define llinf 1001000000000000000ll #define pi 3.141592653589793238 #define rep(i, n) for(ll i = 0; i < (n); i++) #define rep1(i, n) for(ll i = 1; i <= (n); i++) #define rep2(i,l,r) for(ll i = (l); i < (r); i++) #define per(i, n) for(ll i = (n)-1; i >= 0; i--) #define rng(a) a.begin(),a.end() #define fi first #define se second #define pb push_back #define eb emplace_back #define pob pop_back #define mp make_pair #define st string #define sz(x) (int)(x).size() #define mems(x) memset(x, -1, sizeof(x)); #define pcnt __builtin_popcountll #define _GLIBCXX_DEBUG #define dame { puts("-1"); return 0;} #define yes { puts("Yes"); return 0;} #define no { puts("No"); return 0;} #define ret(x) { cout<<(x)< inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false;} template inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false;} // 仮マクロ 便利だったら昇格 #define dump(x) { cout << #x << " = " << (x) << endl;} #define rets(x) { cout<<(x)<< " ";} #define Endl cout<>x[loop];} #define bit(n) (1LL<<(n)) #define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end()) template inline T in(){ T x; cin >> x; return (x);} // ここまで仮マクロ // srand((unsigned)time(NULL)); rand()を用いる際にmainの頭に置く // clock()/CLOCKS_PER_SEC 秒数を知りたいときに用いる #define mod 998244353 using mint = modint998244353; /* #define mod 1000000007 using mint = modint1000000007; */ vector dx={1,0,-1,0}; vector dy={0,1,0,-1}; using pl = pair; using ppl = pair; using V = vector; using Graph = vector>; // G.assign(n, vector()); グローバル変数にGを置く時に置く // 関数を置くのはここ以下 int main() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); ll n = in(); vector v; rep(i,n){ ll x,y; cin >> x >> y; ppl p; p.fi = x+y; p.se.fi = x; p.se.se = y; v.eb(p); } sort(rng(v)); ll dp[n+1]; rep(i,n+1) dp[i] = llinf; dp[0] = 0; rep(i,n){ ll pos = lower_bound(dp,dp+n,v[i].se.se)-dp; chmin(dp[pos],dp[pos-1]+v[i].se.fi); } ret(lower_bound(dp,dp+n,llinf)-dp-1); }