#include template constexpr inline U mod_pow(T base, T exp, T mod) { T ans = 1; base %= mod; while (exp > 0) { if (exp & 1) { ans *= base; ans %= mod; } base *= base; base %= mod; exp >>= 1; } return ans; } namespace prime { namespace miller { using i128 = __int128_t; using u128 = __uint128_t; using u64 = uint64_t; using u32 = uint32_t; bool miller_rabin(uint64_t n,const uint64_t bases[],int siz) { if (n == 2) { return true; } if (n < 2 || (n & 1) == 0) { return false; } uint64_t n1 = n - 1, d = n - 1; uint32_t s = 0; for (; (d & 1) == 0; d >>= 1) { s += 1; } for (int i = 0; i < siz; i++) { uint64_t a = bases[i]; if (a >= n) { a %= n; if (a == 0) { continue; } } uint64_t t = mod_pow(a, d, n); if (t == 1) { continue; } for (uint32_t j = 1; t != n1; ++j) { if (j >= s) { return false; } (t *= t) %= n; } } return true; } constexpr u64 bases_int[3] = { 2, 7, 61 }; // intだと、2,7,61で十分 constexpr u64 bases_ll[7] = { 2, 325, 9375, 28178, 450775, 9780504, 1795265022 }; bool is_prime(u64 n) { if (n < 2) { return false; } else if (n == 2) { return true; } else if (~n & 1) { return false; } if (n < (1ul << 31)) { return miller_rabin(n, bases_int, 3); } else { return miller_rabin(n, bases_ll, 7); } } }; }; ///@brief fast prime check(MillerRabinの素数判定) int main() { int n; scanf("%d", &n); for (int i = 0; i < n; i++) { uint64_t xi; scanf("%lld", &xi); printf("%lld ", xi); if (prime::miller::is_prime(xi)) { puts("1"); } else { puts("0"); } } }