#pragma GCC optimize ( "O3" ) #pragma GCC optimize( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #include using namespace std; using uint = unsigned int; using ll = long long; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define TYPE_OF( VAR ) remove_const::type >::type #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE #define CIN( LL , A ) LL A; cin >> A #define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) ) #define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX ) #define GETLINE( A ) string A; getline( cin , A ) #define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- ) #define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES ) #define QUIT return 0 #define COUT( ANSWER ) cout << ( ANSWER ) << "\n" #define RETURN( ANSWER ) COUT( ANSWER ); QUIT #define DOUBLE( PRECISION , ANSWER ) cout << fixed << setprecision( PRECISION ) << ( ANSWER ) << "\n"; QUIT template inline T Absolute( const T& a ){ return a > 0 ? a : -a; } template inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : ( a % p ) + p; } // ARGUMENTの型がintやuintでないように注意 #define POWER( ANSWER , ARGUMENT , EXPONENT ) \ TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \ { \ TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ ll ANSWER{ 1 }; \ { \ ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( MODULO + ( ( ARGUMENT ) % MODULO ) ) % MODULO; \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_I , LENGTH , MODULO ) \ static ll ANSWER[LENGTH]; \ static ll ANSWER_INV[LENGTH]; \ static ll INVERSE[LENGTH]; \ { \ ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \ FOREQ( i , 1 , MAX_I ){ \ ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= MODULO; \ } \ ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ FOREQ( i , 2 , MAX_I ){ \ ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = MODULO - ( ( ( MODULO / i ) * INVERSE[MODULO % i] ) % MODULO ) ) %= MODULO; \ } \ } \ // 通常の二分探索その1 // EXPRESSIONがANSWERの狭義単調増加関数の時、EXPRESSION >= TARGETを満たす最小の整数を返す。 // 広義単調増加関数を扱いたい時は等号成立の処理を消す。 #define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ ll ANSWER; \ { \ ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \ while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ break; \ } else { \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \ } else { \ VARIABLE_FOR_BINARY_SEARCH_L = ANSWER + 1; \ } \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ } \ } \ } \ // 通常の二分探索その2 // EXPRESSIONがANSWERの狭義単調増加関数の時、EXPRESSION <= TARGETを満たす最大の整数を返す。 // 広義単調増加関数を扱いたい時は等号成立の処理を消す。 #define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ ll ANSWER; \ { \ ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \ while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ break; \ } else { \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH < 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \ } else { \ VARIABLE_FOR_BINARY_SEARCH_U = ANSWER - 1; \ } \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ } \ } \ } \ // 通常の二分探索その3 // EXPRESSIONがANSWERの狭義単調減少関数の時、EXPRESSION >= TARGETを満たす最大の整数を返す。 // 広義単調減少関数を扱いたい時は等号成立の処理を消す。 #define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ ll ANSWER; \ { \ ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \ while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ break; \ } else { \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \ } else { \ VARIABLE_FOR_BINARY_SEARCH_U = ANSWER - 1; \ } \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ } \ } \ } \ // 通常の二分探索その4 // EXPRESSIONがANSWERの狭義単調減少関数の時、EXPRESSION <= TARGETを満たす最小の整数を返す。 // 広義単調減少関数を扱いたい時は等号成立の処理を消す。 #define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ ll ANSWER; \ { \ ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \ while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ break; \ } else { \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH < 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \ } else { \ VARIABLE_FOR_BINARY_SEARCH_L = ANSWER + 1; \ } \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ } \ } \ } \ int main() { UNTIE; CEXPR( int , bound_N , 100000 ); CIN_ASSERT( N , 2 , bound_N ); CIN_ASSERT( M , 1 , bound_N ); REPEAT( M ){ CIN( int , pi ); CIN( int , qi ); CIN( int , ai ); CIN( int , bi ); if( ai < 0 || bi < 0 ){ RETURN( -1 ); } } FOREQ( i , 1 , N ){ cout << "1" << " \n"[i==N]; } QUIT; }