package main import ( "bufio" "fmt" "math/bits" "os" ) func main() { in := bufio.NewReader(os.Stdin) out := bufio.NewWriter(os.Stdout) defer out.Flush() var n int fmt.Fscan(in, &n) nums := make([]int, n) for i := 0; i < n; i++ { fmt.Fscan(in, &nums[i]) } leaves := make([]E, n) for i := 0; i < n; i++ { leaves[i] = E{1, nums[i], nums[i] * nums[i]} } tree := NewLazySegTree(leaves) var q int fmt.Fscan(in, &q) for i := 0; i < q; i++ { var op int fmt.Fscan(in, &op) if op == 1 { var l, r, v int fmt.Fscan(in, &l, &r, &v) l-- tree.Update(l, r, v) } else { var l, r int fmt.Fscan(in, &l, &r) l-- res := tree.Query(l, r) fmt.Fprintln(out, res.sum2) } } } const INF = 1e18 // RangeAddRangeSquareSum type E = struct{ sum0, sum1, sum2 int } // !0次和(size),1次和(sum),2次和(square sum) type Id = int func (*LazySegTree) e() E { return E{} } func (*LazySegTree) id() Id { return 0 } func (*LazySegTree) op(left, right E) E { return E{left.sum0 + right.sum0, left.sum1 + right.sum1, left.sum2 + right.sum2} } func (*LazySegTree) mapping(f Id, g E) E { return E{g.sum0, g.sum1 + f*g.sum0, g.sum2 + 2*g.sum1*f + g.sum0*f*f} } func (*LazySegTree) composition(f, g Id) Id { return f + g } func min(a, b int) int { if a < b { return a } return b } func max(a, b int) int { if a < b { return b } return a } // !template type LazySegTree struct { n int size int log int data []E lazy []Id } func NewLazySegTree(leaves []E) *LazySegTree { tree := &LazySegTree{} n := len(leaves) tree.n = n tree.log = int(bits.Len(uint(n - 1))) tree.size = 1 << tree.log tree.data = make([]E, tree.size<<1) tree.lazy = make([]Id, tree.size) for i := range tree.data { tree.data[i] = tree.e() } for i := range tree.lazy { tree.lazy[i] = tree.id() } for i := 0; i < n; i++ { tree.data[tree.size+i] = leaves[i] } for i := tree.size - 1; i >= 1; i-- { tree.pushUp(i) } return tree } // 查询切片[left:right]的值 // 0<=left<=right<=len(tree.data) func (tree *LazySegTree) Query(left, right int) E { if left < 0 { left = 0 } if right > tree.n { right = tree.n } if left >= right { return tree.e() } left += tree.size right += tree.size for i := tree.log; i >= 1; i-- { if ((left >> i) << i) != left { tree.pushDown(left >> i) } if ((right >> i) << i) != right { tree.pushDown((right - 1) >> i) } } sml, smr := tree.e(), tree.e() for left < right { if left&1 != 0 { sml = tree.op(sml, tree.data[left]) left++ } if right&1 != 0 { right-- smr = tree.op(tree.data[right], smr) } left >>= 1 right >>= 1 } return tree.op(sml, smr) } func (tree *LazySegTree) QueryAll() E { return tree.data[1] } // 更新切片[left:right]的值 // 0<=left<=right<=len(tree.data) func (tree *LazySegTree) Update(left, right int, f Id) { if left < 0 { left = 0 } if right > tree.n { right = tree.n } if left >= right { return } left += tree.size right += tree.size for i := tree.log; i >= 1; i-- { if ((left >> i) << i) != left { tree.pushDown(left >> i) } if ((right >> i) << i) != right { tree.pushDown((right - 1) >> i) } } l2, r2 := left, right for left < right { if left&1 != 0 { tree.propagate(left, f) left++ } if right&1 != 0 { right-- tree.propagate(right, f) } left >>= 1 right >>= 1 } left = l2 right = r2 for i := 1; i <= tree.log; i++ { if ((left >> i) << i) != left { tree.pushUp(left >> i) } if ((right >> i) << i) != right { tree.pushUp((right - 1) >> i) } } } // 二分查询最小的 left 使得切片 [left:right] 内的值满足 predicate func (tree *LazySegTree) MinLeft(right int, predicate func(data E) bool) int { if right == 0 { return 0 } right += tree.size for i := tree.log; i >= 1; i-- { tree.pushDown((right - 1) >> i) } res := tree.e() for { right-- for right > 1 && right&1 != 0 { right >>= 1 } if !predicate(tree.op(tree.data[right], res)) { for right < tree.size { tree.pushDown(right) right = right<<1 | 1 if predicate(tree.op(tree.data[right], res)) { res = tree.op(tree.data[right], res) right-- } } return right + 1 - tree.size } res = tree.op(tree.data[right], res) if (right & -right) == right { break } } return 0 } // 二分查询最大的 right 使得切片 [left:right] 内的值满足 predicate func (tree *LazySegTree) MaxRight(left int, predicate func(data E) bool) int { if left == tree.n { return tree.n } left += tree.size for i := tree.log; i >= 1; i-- { tree.pushDown(left >> i) } res := tree.e() for { for left&1 == 0 { left >>= 1 } if !predicate(tree.op(res, tree.data[left])) { for left < tree.size { tree.pushDown(left) left <<= 1 if predicate(tree.op(res, tree.data[left])) { res = tree.op(res, tree.data[left]) left++ } } return left - tree.size } res = tree.op(res, tree.data[left]) left++ if (left & -left) == left { break } } return tree.n } // 单点查询(不需要 pushUp/op 操作时使用) func (tree *LazySegTree) Get(index int) E { index += tree.size for i := tree.log; i >= 1; i-- { tree.pushDown(index >> i) } return tree.data[index] } // 单点赋值 func (tree *LazySegTree) Set(index int, e E) { index += tree.size for i := tree.log; i >= 1; i-- { tree.pushDown(index >> i) } tree.data[index] = e for i := 1; i <= tree.log; i++ { tree.pushUp(index >> i) } } func (tree *LazySegTree) pushUp(root int) { tree.data[root] = tree.op(tree.data[root<<1], tree.data[root<<1|1]) } func (tree *LazySegTree) pushDown(root int) { if tree.lazy[root] != tree.id() { tree.propagate(root<<1, tree.lazy[root]) tree.propagate(root<<1|1, tree.lazy[root]) tree.lazy[root] = tree.id() } } func (tree *LazySegTree) propagate(root int, f Id) { tree.data[root] = tree.mapping(f, tree.data[root]) // !叶子结点不需要更新lazy if root < tree.size { tree.lazy[root] = tree.composition(f, tree.lazy[root]) } }