#pragma GCC optimize ( "O3" ) #pragma GCC optimize( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #include using namespace std; using ll = long long; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define TYPE_OF( VAR ) remove_const::type >::type #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE #define CIN( LL , A ) LL A; cin >> A #define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) ) #define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES ) #define QUIT return 0 #define COUT( ANSWER ) cout << ( ANSWER ) << "\n" #define RETURN( ANSWER ) COUT( ANSWER ); QUIT template inline T Absolute( const T& a ){ return a > 0 ? a : -a; } inline CEXPR( int , bound_N , 13 ); struct CombSum { int m_val[bound_N+1]; constexpr CombSum() : m_val() { FOREQ( N , 1 , bound_N ){ if( ( N & 1 ) == 1 ){ m_val[N] = 1 << ( N - 1 ); } else { int& m_val_N = m_val[N]; int comb = 1; FOREQ( p , 1 , N ){ ( comb *= ( N - p + 1 ) ) /= p; if( ( p & 1 ) == 1 ){ m_val_N += comb; } } } } } }; int main() { UNTIE; CEXPR( int , bound_T , 6000 ); CIN_ASSERT( T , 1 , bound_T ); CEXPR( int , bound_Pl , 100000000 ); CEXPR( int , bound_Pr , 1000000000 ); CEXPR( ll , bound_Ai , 1000000000 ); CEXPR( ll , bound_evenness , ll( 1 ) << 62 ); CEXPR( int , bound_B , 1 << bound_N ); static set x_set[bound_B][bound_N+1] = {}; CEXPR( int , lim_x , ( ( bound_N * ( bound_N - 1 ) ) >> 1 ) + 1 ); FOR( B , 1 , bound_B ){ set ( &xB_set )[bound_N+1] = x_set[B]; int B_copy = B; int A[bound_N] = {}; int B_card = 0; FOR( d , 0 , bound_N ){ if( ( B_copy & 1 ) == 1 ){ A[B_card++] = d; } B_copy >>= 1; } FOREQ( p , 0 , B_card ){ set& xBp_set = xB_set[p]; xBp_set.insert( lim_x ); xBp_set.insert( -lim_x ); } int power = 1 << B_card; FOREQ( B_p , 0 , power ){ B_copy = B_p; int x = 0; int p = 0; FOR( d , 0 , B_card ){ ( B_copy & 1 ) == 1 ? ( p++ , x += A[d] ) : x -= A[d]; B_copy >>= 1; } xB_set[p].insert( x ); } } constexpr CombSum comb_sum{}; REPEAT( T ){ CIN_ASSERT( N , 1 , bound_N ); CIN_ASSERT( P , bound_Pl , bound_Pr ); CIN_ASSERT( A0 , 1 , bound_Ai ); CIN_ASSERT( A1 , A0 , bound_Ai ); ll d = A1 - A0; FOR( i , 2 , N ){ cin >> A1; } ll answer; if( d == 0 ){ answer = comb_sum.m_val[N] * A0; } else { answer = 0; if( d < 0 ){ d *= -1; A0 -= d * ( N - 1 ); } int power_N = 1 << N; FOR( B , 1 , power_N ){ set ( &xB_set )[bound_N+1] = x_set[B]; int B_copy = B; int B_card = 0; while( B_copy != 0 ){ if( ( B_copy & 1 ) == 1 ){ B_card++; } B_copy >>= 1; } ll evenness = bound_evenness; FOREQ( p , 0 , B_card ){ set& xBp_set = xB_set[p]; ll A0_factor = ( B_card - ( p << 1 ) ) * A0; ll x = A0_factor / d; if( x >= lim_x ){ x = lim_x - 1; } else if( x <= -lim_x ){ x = -lim_x + 1; } auto itr = xBp_set.lower_bound( x ); if( *itr != lim_x ){ ll evenness_curr = Absolute( -A0_factor + *itr * d ); if( evenness > evenness_curr ){ evenness = evenness_curr; } } if( *itr != -lim_x ){ itr--; if( *itr != -lim_x ){ ll evenness_curr = Absolute( -A0_factor + *itr * d ); if( evenness > evenness_curr ){ evenness = evenness_curr; } } } } answer += evenness; } } COUT( answer % P ); } QUIT; }