#include #define int long long #define double long double using namespace std; #define rep(i,n) for(int i=0;i=0;i--) #define Rrep(i,n) for(int i=n;i>0;i--) #define frep(i,n) for(auto &x:n) #define LAST(x) x[x.size()-1] #define ALL(x) (x).begin(),(x).end() #define MAX(x) *max_element(ALL(x)) #define MIN(x) *min_element(ALL(x) #define RUD(a,b) (((a)+(b)-1)/(b)) #define sum1_n(n) ((n)*(n+1)/2) #define SUM1n2(n) (n*(2*n+1)*(n+1))/6 #define SUMkn(k,n) (SUM1n(n)-SUM1n(k-1)) #define SZ(x) ((int)(x).size()) #define PB push_back #define Fi first #define Se second #define lower(vec, i) *lower_bound(ALL(vec), i) #define upper(vec, i) *upper_bound(ALL(vec), i) #define lower_count(vec, i) (int)(lower_bound(ALL(vec), i) - (vec).begin()) #define acc(vec) accumulate(ALL(vec),0LL) template void in(T&... a) { (cin >> ... >> a); } int ini() { int x; cin >> x; return x; } string ins() { string x; cin >> x; return x; } template using v = vector; template using vv = vector>; template using vvv = vector>; using pint = pair; using tint = tuple; using qint = tuple; namespace geometry { using Real = double; const Real EPS = 1e-12; const Real PI = acos(static_cast(-1)); enum { OUT, ON, IN }; inline int sign(const Real& r) { return r <= -EPS ? -1 : r >= EPS ? 1 : 0; } inline bool equals(const Real& a, const Real& b) { return sign(a - b) == 0; } } namespace geometry { using Point = complex< Real >; istream& operator>>(istream& is, Point& p) { Real a, b; is >> a >> b; p = Point(a, b); return is; } ostream& operator<<(ostream& os, const Point& p) { return os << real(p) << " " << imag(p); } Point operator*(const Point& p, const Real& d) { return Point(real(p) * d, imag(p) * d); } // rotate point p counterclockwise by theta rad Point rotate(Real theta, const Point& p) { return Point(cos(theta) * real(p) - sin(theta) * imag(p), sin(theta) * real(p) + cos(theta) * imag(p)); } Real cross(const Point& a, const Point& b) { return real(a) * imag(b) - imag(a) * real(b); } Real dot(const Point& a, const Point& b) { return real(a) * real(b) + imag(a) * imag(b); } bool compare_x(const Point& a, const Point& b) { return equals(real(a), real(b)) ? imag(a) < imag(b) : real(a) < real(b); } bool compare_y(const Point& a, const Point& b) { return equals(imag(a), imag(b)) ? real(a) < real(b) : imag(a) < imag(b); } using Points = vector< Point >; } namespace geometry { using Polygon = vector< Point >; using Polygons = vector< Polygon >; } namespace geometry { int convex_polygon_contains(const Polygon& Q, const Point& p) { int N = (int)Q.size(); complex x(3.0, 0.0); Point g = (Q[0] + Q[N / 3] + Q[N * 2 / 3]) / x; if (equals(imag(g), imag(p)) && equals(real(g), real(p))) return 2; Point gp = p - g; int l = 0, r = N; while (r - l > 1) { int mid = l + (r-l) / 2; Point gl = Q[l] - g; Point gm = Q[mid] - g; if (cross(gl, gm) > 0) { if (cross(gl, gp) >= 0 && cross(gm, gp) <= 0) r = mid; else l = mid; } else { if (cross(gl, gp) <= 0 && cross(gm, gp) >= 0) l = mid; else r = mid; } } r %= N; Real v = cross(Q[l] - p, Q[r] - p); return sign(v) == 0 ? 1 : sign(v) == -1 ? 0 : 2; } } using namespace geometry; void solve() { int t, s, d; in(t, s, d); cout << (double)d / s; } signed main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(14); //cout << setfill('0') << right << setw(4)<< solve(); }