#pragma GCC optimize ( "O3" ) #pragma GCC optimize( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #include using namespace std; using ll = long long; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define TYPE_OF( VAR ) remove_const::type >::type #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE #define CIN( LL , A ) LL A; cin >> A #define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) ) #define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES ) #define QUIT return 0 #define COUT( ANSWER ) cout << ( ANSWER ) << "\n" #define RETURN( ANSWER ) COUT( ANSWER ); QUIT inline CEXPR( int , bound_N , 13 ); inline CEXPR( int , lim_B , 1 << bound_N ); // O(2^N) struct Card { int m_val[lim_B]; constexpr Card() : m_val() { int two_power = 1; FOR( d , 0 , bound_N ){ FOR( B , 0 , two_power ){ m_val[B | two_power] = m_val[B] + 1; } two_power <<= 1; } } }; inline CEXPR( int , lim_x_shift , bound_N * ( bound_N - 1 ) + 1 ); inline CEXPR( int , bound_x , lim_x_shift >> 1 ); inline CEXPR( int , bound_three_power , 1594323 ); // 3^13 // O(3^N) struct X { bool m_val[lim_B][bound_N+1][lim_x_shift]; // constexpr X() : m_val() inline X() : m_val() { int x[bound_three_power] = { bound_x }; int B[bound_three_power] = {}; int p[bound_three_power] = {}; int three_power = 1; int three_power2 = 2; int two_power = 1; FOR( d , 0 , bound_N ){ FOR( i , 0 , three_power ){ int& xi = x[i]; int i_plus = i + three_power; int i_plus2 = i + three_power2; x[i_plus] = xi - d; x[i_plus2] = xi + d; B[i_plus] = B[i_plus2] = B[i] | two_power; p[i_plus2] = ( p[i_plus] = p[i] ) + 1; } three_power = three_power2 + three_power; three_power2 = three_power << 1; two_power <<= 1; } FOR( i , 1 , bound_three_power ){ m_val[B[i]][p[i]][x[i]] = true; } } }; // O(N 3^N) struct Xlr { int m_val[2][lim_B][bound_N+1][lim_x_shift]; inline Xlr( const int ( &card )[lim_B] , const bool ( &x )[lim_B][bound_N+1][lim_x_shift] ) : m_val() { int ( &xl )[lim_B][bound_N+1][lim_x_shift] = m_val[0]; int ( &xr )[lim_B][bound_N+1][lim_x_shift] = m_val[1]; FOR( B , 1 , lim_B ){ const bool ( &xB )[bound_N+1][lim_x_shift] = x[B]; const int& B_card = card[B]; int ( &xlB )[bound_N+1][lim_x_shift] = xl[B]; int ( &xrB )[bound_N+1][lim_x_shift] = xr[B]; FOREQ( p , 0 , B_card ){ const bool ( &xBp )[lim_x_shift] = xB[p]; int ( &xlBp )[lim_x_shift] = xlB[p]; int y_prev = lim_x_shift - 1; FOREQINV( y , lim_x_shift - 1 , 0 ){ if( xBp[y] ){ FOREQINV( z , y_prev , y ){ xlBp[z] = y - bound_x; } y_prev = y - 1; } } FOREQINV( z , y_prev , 0 ){ xlBp[z] = bound_x + 1; } int ( &xrBp )[lim_x_shift] = xrB[p]; y_prev = 0; FOR( y , 0 , lim_x_shift ){ if( xBp[y] ){ FOR( z , y_prev , y ){ xrBp[z] = y - bound_x; } y_prev = y + 1; } } FOR( z , y_prev , lim_x_shift ){ xrBp[z] = bound_x + 1; } } } } }; struct CombSum { int m_val[bound_N+1]; constexpr CombSum() : m_val() { FOREQ( N , 1 , bound_N ){ if( ( N & 1 ) == 1 ){ m_val[N] = 1 << ( N - 1 ); } else { int& m_val_N = m_val[N]; int comb = 1; FOREQ( p , 1 , N ){ ( comb *= ( N - p + 1 ) ) /= p; if( ( p & 1 ) == 1 ){ m_val_N += comb; } } } } } }; int main() { UNTIE; CEXPR( int , bound_T , 6000 ); CIN_ASSERT( T , 1 , bound_T ); CEXPR( int , bound_Pl , 100000000 ); CEXPR( int , bound_Pr , 1000000000 ); CEXPR( ll , bound_Ai , 1000000000 ); CEXPR( ll , bound_evenness , ll( 1 ) << 62 ); constexpr Card card{}; static Xlr xlr( card.m_val , X().m_val ); int ( &xl )[lim_B][bound_N+1][lim_x_shift] = xlr.m_val[0]; int ( &xr )[lim_B][bound_N+1][lim_x_shift] = xlr.m_val[1]; constexpr CombSum comb_sum{}; ll answer; REPEAT( T ){ CIN_ASSERT( N , 1 , bound_N ); CIN_ASSERT( P , bound_Pl , bound_Pr ); CIN_ASSERT( A0 , 1 , bound_Ai ); CIN_ASSERT( A1 , A0 , bound_Ai ); ll d = A1 - A0; FOR( i , 2 , N ){ cin >> A1; } if( d == 0 ){ answer = comb_sum.m_val[N] * A0; } else { answer = 0; if( d < 0 ){ d *= -1; A0 -= d * ( N - 1 ); } int power_N = 1 << N; FOR( B , 1 , power_N ){ int ( &xlB )[bound_N+1][lim_x_shift] = xl[B]; int ( &xrB )[bound_N+1][lim_x_shift] = xr[B]; const int& B_card = card.m_val[B]; ll evenness = bound_evenness; ll A0_factor = B_card * A0; ll A02 = A0 << 1; FOREQ( p , 0 , B_card ){ ll y = ( ( A0_factor < 0 ? A0_factor % d == 0 : false ) ? A0_factor / d - 1 : A0_factor / d ) + bound_x; y >= lim_x_shift ? y = lim_x_shift - 1 : y < 0 ? y = 0 : y; int ( &xlBp )[lim_x_shift] = xlB[p]; int& yl = xlBp[y]; if( yl <= bound_x ){ ll evenness_curr = -A0_factor + yl * d ; evenness_curr < 0 ? evenness_curr *= -1 : evenness_curr; evenness > evenness_curr ? evenness = evenness_curr : evenness; } int ( &xrBp )[lim_x_shift] = xrB[p]; int& yr = xrBp[y]; if( yr <= bound_x ){ ll evenness_curr = -A0_factor + yr * d ; evenness_curr < 0 ? evenness_curr *= -1 : evenness_curr; evenness > evenness_curr ? evenness = evenness_curr : evenness; } A0_factor -= A02; } answer += evenness; } } COUT( answer % P ); } QUIT; }