#pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; //#define int long long typedef long long ll; typedef unsigned long long ul; typedef unsigned int ui; //ll mod = 1; //constexpr ll mod = 998244353; constexpr ll mod = 1000000007; const ll INF = mod * mod; typedef pairP; #define rep(i,n) for(int i=0;i=0;i--) #define Rep(i,sta,n) for(int i=sta;i=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) #define all(v) (v).begin(),(v).end() typedef pair LP; template void chmin(T& a, T b) { a = min(a, b); } template void chmax(T& a, T b) { a = max(a, b); } template vector vmerge(vector& a, vector& b) { vector res; int ida = 0, idb = 0; while (ida < a.size() || idb < b.size()) { if (idb == b.size()) { res.push_back(a[ida]); ida++; } else if (ida == a.size()) { res.push_back(b[idb]); idb++; } else { if (a[ida] < b[idb]) { res.push_back(a[ida]); ida++; } else { res.push_back(b[idb]); idb++; } } } return res; } template void cinarray(vector& v) { rep(i, v.size())cin >> v[i]; } template void coutarray(vector& v) { rep(i, v.size()) { if (i > 0)cout << " "; cout << v[i]; } cout << "\n"; } ll mod_pow(ll x, ll n, ll m = mod) { if (n < 0) { ll res = mod_pow(x, -n, m); return mod_pow(res, m - 2, m); } if (abs(x) >= m)x %= m; if (x < 0)x += m; //if (x == 0)return 0; ll res = 1; while (n) { if (n & 1)res = res * x % m; x = x * x % m; n >>= 1; } return res; } //mod should be <2^31 struct modint { int n; modint() :n(0) { ; } modint(ll m) { if (m < 0 || mod <= m) { m %= mod; if (m < 0)m += mod; } n = m; } operator int() { return n; } }; bool operator==(modint a, modint b) { return a.n == b.n; } bool operator<(modint a, modint b) { return a.n < b.n; } modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= (int)mod; return a; } modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += (int)mod; return a; } modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; } modint operator+(modint a, modint b) { return a += b; } modint operator-(modint a, modint b) { return a -= b; } modint operator*(modint a, modint b) { return a *= b; } modint operator^(modint a, ll n) { if (n == 0)return modint(1); modint res = (a * a) ^ (n / 2); if (n % 2)res = res * a; return res; } ll inv(ll a, ll p) { return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p); } modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); } modint operator/=(modint& a, modint b) { a = a / b; return a; } const int max_n = 1 << 20; modint fact[max_n], factinv[max_n]; void init_f() { fact[0] = modint(1); for (int i = 0; i < max_n - 1; i++) { fact[i + 1] = fact[i] * modint(i + 1); } factinv[max_n - 1] = modint(1) / fact[max_n - 1]; for (int i = max_n - 2; i >= 0; i--) { factinv[i] = factinv[i + 1] * modint(i + 1); } } modint comb(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[b] * factinv[a - b]; } modint combP(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[a - b]; } ll gcd(ll a, ll b) { a = abs(a); b = abs(b); if (a < b)swap(a, b); while (b) { ll r = a % b; a = b; b = r; } return a; } using ld = long double; //typedef long double ld; typedef pair LDP; const ld eps = 1e-10; const ld pi = acosl(-1.0); template void addv(vector& v, int loc, T val) { if (loc >= v.size())v.resize(loc + 1, 0); v[loc] += val; } /*const int mn = 2000005; bool isp[mn]; vector ps; void init() { fill(isp + 2, isp + mn, true); for (int i = 2; i < mn; i++) { if (!isp[i])continue; ps.push_back(i); for (int j = 2 * i; j < mn; j += i) { isp[j] = false; } } }*/ //[,val) template auto prev_itr(set& st, T val) { auto res = st.lower_bound(val); if (res == st.begin())return st.end(); res--; return res; } //[val,) template auto next_itr(set& st, T val) { auto res = st.lower_bound(val); return res; } using mP = pair; mP operator+(mP a, mP b) { return { a.first + b.first,a.second + b.second }; } mP operator+=(mP& a, mP b) { a = a + b; return a; } mP operator-(mP a, mP b) { return { a.first - b.first,a.second - b.second }; } mP operator-=(mP& a, mP b) { a = a - b; return a; } LP operator+(LP a, LP b) { return { a.first + b.first,a.second + b.second }; } LP operator+=(LP& a, LP b) { a = a + b; return a; } LP operator-(LP a, LP b) { return { a.first - b.first,a.second - b.second }; } LP operator-=(LP& a, LP b) { a = a - b; return a; } mt19937 mt(time(0)); const string drul = "DRUL"; string senw = "SENW"; //DRUL,or SENW //int dx[4] = { 1,0,-1,0 }; //int dy[4] = { 0,1,0,-1 }; //----------------------------------------- template struct SegT { private: int sz; vector node; T init_c; function f; public: SegT() { ; } SegT(vector v, T _init_c, function _f) { init_c = _init_c; f = _f; int n = v.size(); sz = 1; while (sz < n)sz *= 2; node.resize(2 * sz - 1, init_c); rep(i, n) { node[i + sz - 1] = v[i]; } per(i, sz - 1) { node[i] = f(node[2 * i + 1], node[2 * i + 2]); } } SegT(int n, T _init_c, function _f) { init_c = _init_c; f = _f; sz = 1; while (sz < n)sz *= 2; node.resize(2 * sz - 1, init_c); } void update(int k, T a) { k += sz - 1; node[k] = a; while (k > 0) { k = (k - 1) / 2; node[k] = f(node[k * 2 + 1], node[k * 2 + 2]); } } T query(int a, int b, int k = 0, int l = 0, int r = -1) { if (r < 0)r = sz; if (r <= a || b <= l)return init_c; else if (a <= l && r <= b)return node[k]; else { T vl = query(a, b, k * 2 + 1, l, (l + r) / 2); T vr = query(a, b, k * 2 + 2, (l + r) / 2, r); return f(vl, vr); } } //k以上でf(x,node[y+sz-1])をtrueにするような最小のy int searchloc(int le, T x, function comp) { int k = le + sz - 1; if (comp(x, node[k]))return le; x = f(x, node[k]); while (k > 0) { int mem = k; k = (k - 1) / 2; if (2 * k + 1 == mem) { if (comp(x, node[2 * k + 2])) { k = 2 * k + 2; break; } x = f(x, node[2 * k + 2]); } } if (k == 0)return sz; while (k < sz - 1) { if (comp(x, node[2 * k + 1])) { k = 2 * k + 1; } else { x = f(x, node[2 * k + 1]); k = 2 * k + 2; } } return k - (sz - 1); } }; using ar = array; using mat = array; mat e = { ar{1,0},ar{0,1} }; mat f(mat a, mat b) { mat res; rep(i, 2)rep(j, 2)res[i][j] = 0; rep(i, 2)rep(k, 2)rep(j, 2)res[i][j] += a[i][k] * b[k][j]; return res; } struct edge { int to, id; }; using edges = vector; using Graph = vector; struct HLDecomposition { struct Chain { int depth; P parent;//chain number,index vector

child;//child chain number,parent index vector mapfrom; SegT stree; Chain() { ; } Chain(int n) :stree(n,e,f) { ; } }; Graph baseG; vector chains; vector

mapto;//raw index->chain number &index vector> mapfrom;//chain number & index ->raw index HLDecomposition() { ; } HLDecomposition(const Graph& g) { baseG = g; const int n = baseG.size(); mapto = vector

(n, P{ -1,-1 }); mapfrom.clear(); vector sz(n, 0); int start = 0; //int start = -1; //rep(i, n)if (baseG[i].size() <= 1) { start = i; break; } //assert(start != -1); size_check_bfs(start, sz); decomposition(start, start, 0, 0, 0, sz); } int depth(int t) { return chains[mapto[t].first].depth; } private: void size_check_bfs(int start, vector& sz) { const int n = baseG.size(); queue

que; que.push({ start,start }); int cnt = 0; vector ord(n, -1); while (!que.empty()) { int from, parent; tie(from, parent) = que.front(); que.pop(); ord[cnt++] = from; for (edge e : baseG[from]) { if (e.to == parent)continue; que.push({ e.to,from }); } } //assert(cnt == n); reverse(all(ord)); rep(i, n) { int from = ord[i]; sz[from] = 1; for (edge e : baseG[from])sz[from] += sz[e.to]; } } int decomposition(int from, int parent, int depth, int pnumber, int pindex, const vector& sz) { vector seq; bfs(from, parent, seq, sz); const int c = chains.size(); chains.push_back(Chain((int)seq.size())); //chains.push_back(Chain()); chains[c].depth = depth; chains[c].parent = { pnumber,pindex }; rep(i, seq.size()) { mapto[seq[i]] = { c,i }; chains[c].mapfrom.push_back(seq[i]); } mapfrom.push_back(chains[c].mapfrom); rep(i, seq.size()) { for (edge e : baseG[seq[i]]) { if (mapto[e.to].first != -1)continue; int nc = decomposition(e.to, seq[i], depth + 1, c, i, sz); chains[c].child.push_back({ nc,i }); } } return c; } void bfs(int from, int parent, vector& seq, const vector& sz) { for (;;) { seq.push_back(from); int best = -1, next = -1; for (edge e : baseG[from]) { if (e.to == parent)continue; if (best < sz[e.to]) { best = sz[e.to]; next = e.to; } } if (next == -1)break; parent = from; from = next; } } vector> all_edge(int u, int v) { vector> res; if (depth(u) > depth(v))swap(u, v); while (depth(v) > depth(u)) { res.push_back({ mapto[v].first,{ 0,mapto[v].second + 1 } }); P par = chains[mapto[v].first].parent; v = mapfrom[par.first][par.second]; } while (mapto[v].first != mapto[u].first) { res.push_back({ mapto[v].first,{ 0,mapto[v].second + 1 } }); P par = chains[mapto[v].first].parent; v = mapfrom[par.first][par.second]; res.push_back({ mapto[u].first,{ 0,mapto[u].second + 1 } }); par = chains[mapto[u].first].parent; u = mapfrom[par.first][par.second]; } P p = minmax(mapto[v].second, mapto[u].second); res.push_back({ mapto[v].first,{ p.first + 1,p.second + 1 } }); return res; } vector> all_vertice(int u, int v) { vector> res; if (depth(u) > depth(v))swap(u, v); while (depth(v) > depth(u)) { res.push_back({ mapto[v].first,{ 0,mapto[v].second + 1 } }); P par = chains[mapto[v].first].parent; v = mapfrom[par.first][par.second]; } while (mapto[v].first != mapto[u].first) { res.push_back({ mapto[v].first,{ 0,mapto[v].second + 1 } }); P par = chains[mapto[v].first].parent; v = mapfrom[par.first][par.second]; res.push_back({ mapto[u].first,{ 0,mapto[u].second + 1 } }); par = chains[mapto[u].first].parent; u = mapfrom[par.first][par.second]; } P p = minmax(mapto[v].second, mapto[u].second); res.push_back({ mapto[v].first,{ p.first,p.second + 1 } }); return res; } public: void update(int v, mat a) { int id = mapto[v].first; int loc = mapto[v].second; chains[id].stree.update(loc, a); } void query(int u, int v) { mat res = e; auto es = all_edge(u, v); for (auto pp : es) { int id = pp.first; int le = pp.second.first; int ri = pp.second.second; mat nex = chains[id].stree.query(le, ri); res = f(nex, res); } rep(i, 4) { if (i > 0)cout << " "; cout << res[i / 2][i % 2]; }cout << "\n"; } }; void solve() { int n; cin >> n; Graph g(n); rep(i, n - 1) { int a, b; cin >> a >> b; g[a].push_back({ b,i }); g[b].push_back({ a,i }); } HLDecomposition hld(g); vector trans(n-1); function dfs = [&](int id, int fr) { for (edge e : g[id])if (e.to != fr) { trans[e.id] = e.to; dfs(e.to, id); } }; dfs(0, -1); int q; cin >> q; rep(i, q) { char typ; cin >> typ; if (typ == 'x') { int id; mat a; cin >> id; rep(i, 2)rep(j, 2) { int x; cin >> x; a[i][j] = x; } hld.update(trans[id], a); } else { int u, v; cin >> u >> v; hld.query(u, v); } } } signed main() { ios::sync_with_stdio(false); cin.tie(0); //cout << fixed << setprecision(8); //init_f(); //init(); //while(true) //expr(); //int t; cin >> t; rep(i, t) solve(); return 0; }