def stern_brocot_tree_search(max_val): lower=(1,1) upper=(0,1) now=(1,1) while True: now=(lower[0]+upper[0],lower[1]+upper[1]) now_judge=judge_function(now) if now_judge: frm=lower to=upper else: frm=upper to=lower L=1 R=2 while judge_function((frm[0]+R*to[0],frm[1]+R*to[1]))==now_judge: L*=2 R*=2 if frm[0]+L*to[0]>max_val or frm[1]+L*to[1]>max_val: return to while L+1=k: return True return False def count(n,P,Q): dp=[0]*(n+1) for i in range(1,n+1): dp[i]=(P*i)//Q for p in primes: if p>n: return sum(dp) for i in range(n//p,0,-1): dp[i*p]-=dp[i] for _ in range(int(input())): n,k=map(int,input().split()) c=count(n,n-1,n) if k==c+1: print('1/1') continue if k<=c: rev=False elif k<=2*c+1: rev=True k=2*c+2-k else: print(-1) continue ans=stern_brocot_tree_search(n) num,den=ans if rev: den,num=num,den print(str(num)+'/'+str(den))