#include #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") using namespace std; using std::cout; using std::cin; using std::endl; using ll=long long; using ld=long double; ll ILL=2167167167167167167; const int INF=2100000000; const int mod=998244353; #define rep(i,a,b) for (ll i=a;i using _pq = priority_queue, greater>; template ll LB(vector &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();} template ll UB(vector &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();} template bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;} template bool chmax(T &a,const T &b){if(a void So(vector &v) {sort(v.begin(),v.end());} template void Sore(vector &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});} void yneos(bool a){if(a) cout<<"Yes\n"; else cout<<"No\n";} template void vec_out(vector &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<" ";cout< T vec_min(vector &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;} template T vec_max(vector &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;} template T vec_sum(vector &a){assert(!a.empty());T ans=a[0]-a[0];for(auto &x:a) ans+=x;return ans;} //Mobius(n)=0 exists p n|p*p // =-1 if n=p_1*p_2*...*p_{2a+1} // =1 if n=p_1*p_2*...*p_{2a} std::vector Mobius(int N){ std::vector p(N+1,-2); p[1]=1; for(int i=2;i<=N;i++){ if(p[i]!=-2) continue; p[i]=-1; for(int j=i*2;j<=N;j+=i){ if(p[j]==-2) p[j]=-1; else p[j]*=-1; } if(N/i>t; rep(i,0,t) solve(); } void solve(){ ll N,K; cin>>N>>K; vector> table(N+1); auto M=Mobius(N); rep(i,1,N+1){ for(int j=i;j<=N;j+=i) table[j].push_back(i); } int C=0; auto calc=[&](ll A,ll B)->ll{ C++; vector p(1+N); rep(i,1,N+1) p[i]=min(N,(A*i)/B); ll res=0; rep(i,1,N+1){ for(auto x:table[i]) res+=M[x]*(p[i]/x); } return res; }; if(calc(N,1)void{ //cout< L={1,N},R={N,1}; if(h>K) R={1,1}; else{ R={1,1}; K=2*h-K; rev=1; } while(true){ pair med={-1,-1}; rep(i,1,N+1){ ll X=(L.first*i+L.second)/L.second; ll n_X=max(1ll,X); ll Y=(i*(R.first)-1)/R.second; ll n_Y=min(N,Y); if(n_X<=n_Y){ med={(n_X+n_Y)/2,i}; break; } } //cout<