#include using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 998244353; // constexpr int MOD = 1000000007; constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1}; constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}; constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1}; template inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; } template inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template struct MInt { unsigned int v; MInt() : v(0) {} MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {} static constexpr int get_mod() { return M; } static void set_mod(const int divisor) { assert(divisor == M); } static void init(const int x) { inv(x); fact(x); fact_inv(x); } template static MInt inv(const int n) { // assert(0 <= n && n < M && std::gcd(n, M) == 1); static std::vector inverse{0, 1}; const int prev = inverse.size(); if (n < prev) return inverse[n]; if constexpr (MEMOIZES) { // "n!" and "M" must be disjoint. inverse.resize(n + 1); for (int i = prev; i <= n; ++i) { inverse[i] = -inverse[M % i] * (M / i); } return inverse[n]; } int u = 1, v = 0; for (unsigned int a = n, b = M; b;) { const unsigned int q = a / b; std::swap(a -= q * b, b); std::swap(u -= q * v, v); } return u; } static MInt fact(const int n) { static std::vector factorial{1}; const int prev = factorial.size(); if (n >= prev) { factorial.resize(n + 1); for (int i = prev; i <= n; ++i) { factorial[i] = factorial[i - 1] * i; } } return factorial[n]; } static MInt fact_inv(const int n) { static std::vector f_inv{1}; const int prev = f_inv.size(); if (n >= prev) { f_inv.resize(n + 1); f_inv[n] = inv(fact(n).v); for (int i = n; i > prev; --i) { f_inv[i - 1] = f_inv[i] * i; } } return f_inv[n]; } static MInt nCk(const int n, const int k) { if (n < 0 || n < k || k < 0) return 0; return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) : fact_inv(n - k) * fact_inv(k)); } static MInt nPk(const int n, const int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); } static MInt nHk(const int n, const int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); } static MInt large_nCk(long long n, const int k) { if (n < 0 || n < k || k < 0) return 0; inv(k); MInt res = 1; for (int i = 1; i <= k; ++i) { res *= inv(i) * n--; } return res; } MInt pow(long long exponent) const { MInt res = 1, tmp = *this; for (; exponent > 0; exponent >>= 1) { if (exponent & 1) res *= tmp; tmp *= tmp; } return res; } MInt& operator+=(const MInt& x) { if (std::cmp_greater_equal(v += x.v, M)) v -= M; return *this; } MInt& operator-=(const MInt& x) { if (std::cmp_greater_equal(v += M - x.v, M)) v -= M; return *this; } MInt& operator*=(const MInt& x) { v = static_cast(v) * x.v % M; return *this; } MInt& operator/=(const MInt& x) { return *this *= inv(x.v); } auto operator<=>(const MInt& x) const = default; MInt& operator++() { if (std::cmp_equal(++v, M)) v = 0; return *this; } MInt operator++(int) { const MInt res = *this; ++*this; return res; } MInt& operator--() { v = (v == 0 ? M - 1 : v - 1); return *this; } MInt operator--(int) { const MInt res = *this; --*this; return res; } MInt operator+() const { return *this; } MInt operator-() const { return MInt(v ? M - v : 0); } MInt operator+(const MInt& x) const { return MInt(*this) += x; } MInt operator-(const MInt& x) const { return MInt(*this) -= x; } MInt operator*(const MInt& x) const { return MInt(*this) *= x; } MInt operator/(const MInt& x) const { return MInt(*this) /= x; } friend std::ostream& operator<<(std::ostream& os, const MInt& x) { return os << x.v; } friend std::istream& operator>>(std::istream& is, MInt& x) { long long v; is >> v; x = MInt(v); return is; } }; using ModInt = MInt; // https://yukicoder.me/submissions/751758 template struct xor_segment_tree{ int N; vector> ST; function f; T E; xor_segment_tree(vector &A, function f, T E): f(f), E(E){ N = A.size(); ST = vector>(N * 2 - 1); for (int i = 0; i < N; i++){ ST[N - 1 + i].push_back(A[i]); } for (int i = N - 2; i >= 0; i--){ int cnt = ST[i * 2 + 1].size(); for (int j = 0; j < cnt; j++){ ST[i].push_back(f(ST[i * 2 + 1][j], ST[i * 2 + 2][j])); } for (int j = 0; j < cnt; j++){ ST[i].push_back(f(ST[i * 2 + 2][j], ST[i * 2 + 1][j])); } } } T range_fold(int L, int R, int x, int i, int l, int r){ if (r <= L || R <= l){ return E; } else if (L <= l && r <= R){ return ST[i][x]; } else { int p = (r - l) / 2; int m = (l + r) / 2; if ((x & p) == 0){ T resL = range_fold(L, R, x, i * 2 + 1, l, m); T resR = range_fold(L, R, x, i * 2 + 2, m, r); return f(resL, resR); } else { T resL = E; if (R >= m){ resL = range_fold(max(L, m) - p, R - p, x ^ p, i * 2 + 1, l, m); } T resR = E; if (L < m){ resR = range_fold(L + p, min(R, m) + p, x ^ p, i * 2 + 2, m, r); } return f(resR, resL); } } } T range_fold(int L, int R, int x){ return range_fold(L, R, x, 0, 0, N); } void update(const int i, const T& x) { ST[N - 1 + i] = {x}; if (N - 1 + i == 0) return; for (int p = (N - 1 + i - 1) / 2; ; p = (p - 1) / 2){ ST[p].clear(); int cnt = ST[p * 2 + 1].size(); for (int j = 0; j < cnt; j++){ ST[p].push_back(f(ST[p * 2 + 1][j], ST[p * 2 + 2][j])); } for (int j = 0; j < cnt; j++){ ST[p].push_back(f(ST[p * 2 + 2][j], ST[p * 2 + 1][j])); } if (p == 0) break; } } }; struct linear{ ModInt a; int b; linear(){ a = 0; b = 0; } linear(const ModInt& a, const int b): a(a), b(b){ } }; linear composite(const linear& A, const linear& B){ return linear(A.a * ModInt(11).pow(B.b) + B.a * ModInt(2).pow(A.b), A.b + B.b); } int main() { int n; cin >> n; vector f(1 << n); REP(i, 1 << n) { char s; cin >> s; f[i] = linear(s - '0', 1); } xor_segment_tree F(f, composite, linear()); int q; cin >> q; while (q--) { int type; cin >> type; if (type == 1) { int x, y; cin >> x >> y; F.update(x, linear(y, 1)); } else if (type == 2) { int l, r, x; cin >> l >> r >> x; cout << F.range_fold(l, r + 1, x).a << '\n'; } } return 0; }