#pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include using namespace std; #define rep(i, n) for (int i = 0; i < (n); i++) #define per(i, n) for (int i = (n)-1; i >= 0; i--) #define rep2(i, l, r) for (int i = (l); i < (r); i++) #define per2(i, l, r) for (int i = (r)-1; i >= (l); i--) #define each(e, v) for (auto &e : v) #define MM << " " << #define pb push_back #define eb emplace_back #define all(x) begin(x), end(x) #define rall(x) rbegin(x), rend(x) #define sz(x) (int)x.size() using ll = long long; using pii = pair; using pil = pair; using pli = pair; using pll = pair; template using minheap = priority_queue, greater>; template using maxheap = priority_queue; template bool chmax(T &x, const T &y) { return (x < y) ? (x = y, true) : false; } template bool chmin(T &x, const T &y) { return (x > y) ? (x = y, true) : false; } template int flg(T x, int i) { return (x >> i) & 1; } int popcount(int x) { return __builtin_popcount(x); } int popcount(ll x) { return __builtin_popcountll(x); } int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template void print(const vector &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } template void printn(const vector &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << '\n'; } template int lb(const vector &v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template int ub(const vector &v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template void rearrange(vector &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } template vector id_sort(const vector &v, bool greater = false) { int n = v.size(); vector ret(n); iota(begin(ret), end(ret), 0); sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; }); return ret; } template void reorder(vector &a, const vector &ord) { int n = a.size(); vector b(n); for (int i = 0; i < n; i++) b[i] = a[ord[i]]; swap(a, b); } template T floor(T x, T y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x >= 0 ? x / y : (x - y + 1) / y); } template T ceil(T x, T y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x >= 0 ? (x + y - 1) / y : x / y); } template pair operator+(const pair &p, const pair &q) { return make_pair(p.first + q.first, p.second + q.second); } template pair operator-(const pair &p, const pair &q) { return make_pair(p.first - q.first, p.second - q.second); } template istream &operator>>(istream &is, pair &p) { S a; T b; is >> a >> b; p = make_pair(a, b); return is; } template ostream &operator<<(ostream &os, const pair &p) { return os << p.first << ' ' << p.second; } struct io_setup { io_setup() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); } } io_setup; const int inf = (1 << 30) - 1; const ll INF = (1LL << 60) - 1; // const int MOD = 1000000007; const int MOD = 998244353; struct Hopcroft_Karp { vector> es; vector d, match; vector used, used2; const int n, m; Hopcroft_Karp(int n, int m) : es(n), d(n), match(m), used(n), used2(n), n(n), m(m) {} void add_edge(int u, int v) { es[u].push_back(v); } void _bfs() { fill(begin(d), end(d), -1); queue que; for (int i = 0; i < n; i++) { if (!used[i]) { que.push(i); d[i] = 0; } } while (!que.empty()) { int i = que.front(); que.pop(); for (auto &e : es[i]) { int j = match[e]; if (j != -1 && d[j] == -1) { que.push(j); d[j] = d[i] + 1; } } } } bool _dfs(int now) { used2[now] = true; for (auto &e : es[now]) { int u = match[e]; if (u == -1 || (!used2[u] && d[u] == d[now] + 1 && _dfs(u))) { match[e] = now, used[now] = true; return true; } } return false; } int max_matching() { // 右側の i は左側の match[i] とマッチングする fill(begin(match), end(match), -1), fill(begin(used), end(used), false); int ret = 0; while (true) { _bfs(); fill(begin(used2), end(used2), false); int flow = 0; for (int i = 0; i < n; i++) { if (!used[i] && _dfs(i)) flow++; } if (flow == 0) break; ret += flow; } return ret; } }; template struct Mod_Int { int x; Mod_Int() : x(0) {} Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} static int get_mod() { return mod; } Mod_Int &operator+=(const Mod_Int &p) { if ((x += p.x) >= mod) x -= mod; return *this; } Mod_Int &operator-=(const Mod_Int &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } Mod_Int &operator*=(const Mod_Int &p) { x = (int)(1LL * x * p.x % mod); return *this; } Mod_Int &operator/=(const Mod_Int &p) { *this *= p.inverse(); return *this; } Mod_Int &operator++() { return *this += Mod_Int(1); } Mod_Int operator++(int) { Mod_Int tmp = *this; ++*this; return tmp; } Mod_Int &operator--() { return *this -= Mod_Int(1); } Mod_Int operator--(int) { Mod_Int tmp = *this; --*this; return tmp; } Mod_Int operator-() const { return Mod_Int(-x); } Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; } Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; } Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; } Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; } bool operator==(const Mod_Int &p) const { return x == p.x; } bool operator!=(const Mod_Int &p) const { return x != p.x; } Mod_Int inverse() const { assert(*this != Mod_Int(0)); return pow(mod - 2); } Mod_Int pow(long long k) const { Mod_Int now = *this, ret = 1; for (; k > 0; k >>= 1, now *= now) { if (k & 1) ret *= now; } return ret; } friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; } friend istream &operator>>(istream &is, Mod_Int &p) { long long a; is >> a; p = Mod_Int(a); return is; } }; using mint = Mod_Int; template vector divisors(const T &n) { vector ret; for (T i = 1; i * i <= n; i++) { if (n % i == 0) { ret.push_back(i); if (i * i != n) ret.push_back(n / i); } } sort(begin(ret), end(ret)); return ret; } template vector> prime_factor(T n) { vector> ret; for (T i = 2; i * i <= n; i++) { int cnt = 0; while (n % i == 0) cnt++, n /= i; if (cnt > 0) ret.emplace_back(i, cnt); } if (n > 1) ret.emplace_back(n, 1); return ret; } template bool is_prime(const T &n) { if (n == 1) return false; for (T i = 2; i * i <= n; i++) { if (n % i == 0) return false; } return true; } // 1,2,...,n のうち k と互いに素である自然数の個数 template T coprime(T n, T k) { vector> ps = prime_factor(k); int m = ps.size(); T ret = 0; for (int i = 0; i < (1 << m); i++) { T prd = 1; for (int j = 0; j < m; j++) { if ((i >> j) & 1) prd *= ps[j].first; } ret += (__builtin_parity(i) ? -1 : 1) * (n / prd); } return ret; } vector Eratosthenes(const int &n) { vector ret(n + 1, true); if (n >= 0) ret[0] = false; if (n >= 1) ret[1] = false; for (int i = 2; i * i <= n; i++) { if (!ret[i]) continue; for (int j = i + i; j <= n; j += i) ret[j] = false; } return ret; } vector Eratosthenes2(const int &n) { vector ret(n + 1); iota(begin(ret), end(ret), 0); if (n >= 0) ret[0] = -1; if (n >= 1) ret[1] = -1; for (int i = 2; i * i <= n; i++) { if (ret[i] < i) continue; for (int j = i + i; j <= n; j += i) ret[j] = min(ret[j], i); } return ret; } // n 以下の素数の数え上げ template T count_prime(T n) { if (n < 2) return 0; vector ns = {0}; for (T i = n; i > 0; i = n / (n / i + 1)) ns.push_back(i); vector h = ns; for (T &x : h) x--; for (T x = 2, m = sqrtl(n), k = ns.size(); x <= m; x++) { if (h[k - x] == h[k - x + 1]) continue; // h(x-1,x-1) = h(x-1,x) ならば x は素数ではない T x2 = x * x, pi = h[k - x + 1]; for (T i = 1, j = ns[i]; i < k && j >= x2; j = ns[++i]) h[i] -= h[i * x <= m ? i * x : k - j / x] - pi; } return h[1]; } // i 以下で i と互いに素な自然数の個数のテーブル vector Euler_totient_table(const int &n) { vector dp(n + 1, 0); for (int i = 1; i <= n; i++) dp[i] = i; for (int i = 2; i <= n; i++) { if (dp[i] == i) { dp[i]--; for (int j = i + i; j <= n; j += i) { dp[j] /= i; dp[j] *= i - 1; } } } return dp; } // 約数包除に用いる係数テーブル (平方数で割り切れるなら 0、素因数の種類が偶数なら +1、奇数なら -1) vector inclusion_exclusion_table(int n) { auto p = Eratosthenes2(n); vector ret(n + 1, 0); if (n >= 1) ret[1] = 1; for (int i = 2; i <= n; i++) { int x = p[i], j = i / x; ret[i] = (p[j] == x ? 0 : -ret[j]); } return ret; } using ld = long double; void solve() { ll N, K; cin >> N >> K; auto sgn = inclusion_exclusion_table(N); auto calc = [&](ll x, ll y) { vector c(N + 1); rep2(i, 1, N + 1) { c[i] = (y == 0 ? INF : ld(x * i) / ld(y)); chmin(c[i], N); } ll ret = 1; if (y == 0) ret++; rep2(i, 1, N + 1) { for (int j = i; j <= N; j += i) { ret += sgn[i] * floor(ld(c[j]) / ld(i)); // } } return ret - 1; }; auto ch = [&](ld t) { ll mx = 0, my = 1; rep2(y, 1, N + 1) { ll x = floor(t * y); if (x * my >= y * mx) mx = x, my = y; } ll g = gcd(mx, my); mx /= g, my /= g; return pll(mx, my); }; ll cnt = calc(1, 1); bool rev = false; if (K > 2 * cnt - 1) { cout << "-1\n"; return; } if (K > cnt) { K = 2 * cnt - K; rev = true; } ld EPS = 1e-12; auto find = [&](ll K) { // int cnt = calc(1, 0); // if (cnt == K) return pll(1, 0); ld l = 0 - EPS, r = 1 + EPS; rep(_, 40) { ld m = (l + r) * 0.5; auto [x, y] = ch(m); (calc(x, y) >= K ? r : l) = m; } // cout << l << ' ' << r << '\n'; r += EPS; return ch(r); }; // cout << calc(1, N) << '\n'; if (calc(N, 1) < K) { cout << "-1\n"; return; } auto [x, y] = find(K); if (rev) swap(x, y); // assert(calc(x, y) == K); cout << x << "/" << y << '\n'; } int main() { int T = 1; cin >> T; while (T--) solve(); }