// ---------- begin scannner ---------- #[allow(dead_code)] mod scanner { use std::str::FromStr; pub struct Scanner<'a> { it: std::str::SplitWhitespace<'a>, } impl<'a> Scanner<'a> { pub fn new(s: &'a String) -> Scanner<'a> { Scanner { it: s.split_whitespace(), } } pub fn next(&mut self) -> T { self.it.next().unwrap().parse::().ok().unwrap() } pub fn next_bytes(&mut self) -> Vec { self.it.next().unwrap().bytes().collect() } pub fn next_chars(&mut self) -> Vec { self.it.next().unwrap().chars().collect() } pub fn next_vec(&mut self, len: usize) -> Vec { (0..len).map(|_| self.next()).collect() } } } // ---------- end scannner ---------- use std::io::Write; fn main() { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); let mut sc = scanner::Scanner::new(&s); let out = std::io::stdout(); let mut out = std::io::BufWriter::new(out.lock()); run(&mut sc, &mut out); } fn run(sc: &mut scanner::Scanner, out: &mut std::io::BufWriter) { let n: usize = sc.next(); let s = sc.next_bytes(); let mut a = s.iter().map(|s| Value::new((*s - b'0') as u32)).collect::>(); let mut seg = XorSegmentTree::new(&a); let q: usize = sc.next(); for _ in 0..q { let op: u8 = sc.next(); if op == 1 { let x: usize = sc.next(); let y: u32 = sc.next(); seg.update(x, Value::new(y)); a[x] = Value::new(y); } else { let l: usize = sc.next(); let r = sc.next::() + 1; let x: usize = sc.next(); let ans = seg.find(l, r, x).0; writeln!(out, "{}", ans).ok(); /* let mut value = Value::e(); for i in l..r { let i = i ^ x; value = value.merge(&a[i]); } println!("{:?}", value); */ } } } #[derive(Clone, Debug)] struct Value(M, M, M); impl Value { fn new(a: u32) -> Self { Value(M::new(a), M::new(2), M::new(11)) } } impl Monoid for Value { fn merge(&self, rhs: &Self) -> Self { let s = self.0 * rhs.2 + rhs.0 * self.1; let two = self.1 * rhs.1; let e = self.2 * rhs.2; Self(s, two, e) } fn e() -> Self { Value(M::zero(), M::one(), M::one()) } } // ---------- begin modint ---------- use std::marker::*; use std::ops::*; pub trait Modulo { fn modulo() -> u32; } pub struct ConstantModulo; impl Modulo for ConstantModulo<{ M }> { fn modulo() -> u32 { M } } pub struct ModInt(u32, PhantomData); impl Clone for ModInt { fn clone(&self) -> Self { Self::new_unchecked(self.0) } } impl Copy for ModInt {} impl Add for ModInt { type Output = ModInt; fn add(self, rhs: Self) -> Self::Output { let mut v = self.0 + rhs.0; if v >= T::modulo() { v -= T::modulo(); } Self::new_unchecked(v) } } impl AddAssign for ModInt { fn add_assign(&mut self, rhs: Self) { *self = *self + rhs; } } impl Sub for ModInt { type Output = ModInt; fn sub(self, rhs: Self) -> Self::Output { let mut v = self.0 - rhs.0; if self.0 < rhs.0 { v += T::modulo(); } Self::new_unchecked(v) } } impl SubAssign for ModInt { fn sub_assign(&mut self, rhs: Self) { *self = *self - rhs; } } impl Mul for ModInt { type Output = ModInt; fn mul(self, rhs: Self) -> Self::Output { let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64; Self::new_unchecked(v as u32) } } impl MulAssign for ModInt { fn mul_assign(&mut self, rhs: Self) { *self = *self * rhs; } } impl Neg for ModInt { type Output = ModInt; fn neg(self) -> Self::Output { if self.is_zero() { Self::zero() } else { Self::new_unchecked(T::modulo() - self.0) } } } impl std::fmt::Display for ModInt { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.0) } } impl std::fmt::Debug for ModInt { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.0) } } impl Default for ModInt { fn default() -> Self { Self::zero() } } impl std::str::FromStr for ModInt { type Err = std::num::ParseIntError; fn from_str(s: &str) -> Result { let val = s.parse::()?; Ok(ModInt::new(val)) } } impl From for ModInt { fn from(val: usize) -> ModInt { ModInt::new_unchecked((val % T::modulo() as usize) as u32) } } impl From for ModInt { fn from(val: u64) -> ModInt { ModInt::new_unchecked((val % T::modulo() as u64) as u32) } } impl From for ModInt { fn from(val: i64) -> ModInt { let mut v = ((val % T::modulo() as i64) + T::modulo() as i64) as u32; if v >= T::modulo() { v -= T::modulo(); } ModInt::new_unchecked(v) } } impl ModInt { pub fn new_unchecked(n: u32) -> Self { ModInt(n, PhantomData) } pub fn zero() -> Self { ModInt::new_unchecked(0) } pub fn one() -> Self { ModInt::new_unchecked(1) } pub fn is_zero(&self) -> bool { self.0 == 0 } } impl ModInt { pub fn new(d: u32) -> Self { ModInt::new_unchecked(d % T::modulo()) } pub fn pow(&self, mut n: u64) -> Self { let mut t = Self::one(); let mut s = *self; while n > 0 { if n & 1 == 1 { t *= s; } s *= s; n >>= 1; } t } pub fn inv(&self) -> Self { assert!(!self.is_zero()); self.pow(T::modulo() as u64 - 2) } pub fn fact(n: usize) -> Self { (1..=n).fold(Self::one(), |s, a| s * Self::from(a)) } pub fn perm(n: usize, k: usize) -> Self { if k > n { return Self::zero(); } ((n - k + 1)..=n).fold(Self::one(), |s, a| s * Self::from(a)) } pub fn binom(n: usize, k: usize) -> Self { if k > n { return Self::zero(); } let k = k.min(n - k); let mut nu = Self::one(); let mut de = Self::one(); for i in 0..k { nu *= Self::from(n - i); de *= Self::from(i + 1); } nu * de.inv() } } // ---------- end modint ---------- // ---------- begin precalc ---------- pub struct Precalc { fact: Vec>, ifact: Vec>, inv: Vec>, } impl Precalc { pub fn new(n: usize) -> Precalc { let mut inv = vec![ModInt::one(); n + 1]; let mut fact = vec![ModInt::one(); n + 1]; let mut ifact = vec![ModInt::one(); n + 1]; for i in 2..=n { fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32); } ifact[n] = fact[n].inv(); if n > 0 { inv[n] = ifact[n] * fact[n - 1]; } for i in (1..n).rev() { ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32); inv[i] = ifact[i] * fact[i - 1]; } Precalc { fact, ifact, inv } } pub fn inv(&self, n: usize) -> ModInt { assert!(n > 0); self.inv[n] } pub fn fact(&self, n: usize) -> ModInt { self.fact[n] } pub fn ifact(&self, n: usize) -> ModInt { self.ifact[n] } pub fn perm(&self, n: usize, k: usize) -> ModInt { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[n - k] } pub fn binom(&self, n: usize, k: usize) -> ModInt { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[k] * self.ifact[n - k] } } // ---------- end precalc ---------- type M = ModInt>; pub trait Monoid: Clone { fn merge(&self, rhs: &Self) -> Self; fn e() -> Self; } pub struct StaticXorSegmentTree { data: Vec>, size: usize, } impl StaticXorSegmentTree where T: Monoid, { pub fn new(a: &[T]) -> Self { let size = a.len(); assert!(size.next_power_of_two() == size); let k = size.trailing_zeros() as usize; let mut data = Vec::with_capacity(k + 1); data.push(Vec::from(a)); for i in 1..=k { let mut a = Vec::with_capacity(size); for data in data.last().unwrap().chunks(1 << i) { let (l, r) = data.split_at(1 << (i - 1)); a.extend(l.iter().zip(r.iter()).map(|(l, r)| l.merge(r))); a.extend(l.iter().zip(r.iter()).map(|(l, r)| r.merge(l))); } data.push(a); } Self { data, size } } pub fn find(&self, mut l: usize, mut r: usize, xor: usize) -> T { assert!(l <= r && r <= self.size && xor < self.size); if l == r { return T::e(); } let mut x = T::e(); let mut y = T::e(); for (shift, data) in self.data.iter().enumerate() { if l >> shift & 1 == 1 { x = x.merge(&data[l ^ xor]); l += 1 << shift; } if r >> shift & 1 == 1 { r -= 1 << shift; y = data[r ^ xor].merge(&y); } if l == r { break; } } x.merge(&y) } pub fn find_all(&self, xor: usize) -> T { assert!(xor < self.size); self.data.last().unwrap()[xor].clone() } fn update(&mut self, pos: usize, v: T) { assert!(pos < self.size); self.data[0][pos] = v; for shift in 1..self.data.len() { let s = (pos >> shift) << shift; let mut p = std::mem::take(&mut self.data[shift]); let c = &self.data[shift - 1][s..(s + (1 << shift))]; let (l, r) = c.split_at(1 << (shift - 1)); let ab = l.iter().zip(r.iter()).chain(r.iter().zip(l.iter())); for (p, (a, b)) in p[s..].iter_mut().zip(ab) { *p = a.merge(b); } self.data[shift] = p; } } } pub struct XorSegmentTree { data: Vec>, size: usize, batch: usize, } impl XorSegmentTree where T: Monoid, { pub fn new(a: &[T]) -> Self { let size = a.len(); assert!(size.next_power_of_two() == size); let batch = size.trailing_zeros() as usize / 2; let data = a .chunks(1 << batch) .map(|a| StaticXorSegmentTree::new(a)) .collect(); Self { data, size, batch } } fn partition(&self, x: usize) -> (usize, usize) { (x >> self.batch, x & ((1 << self.batch) - 1)) } pub fn update(&mut self, x: usize, v: T) { assert!(x < self.size); let (a, b) = self.partition(x); self.data[a].update(b, v); } pub fn find(&self, l: usize, r: usize, xor: usize) -> T { assert!(l <= r && r <= self.size && xor < self.size); if l == r { return T::e(); } let (u, d) = self.partition(xor); let mut ans = T::e(); for i in 0..(self.size >> self.batch) { let geta = i << self.batch; let l = l.max(geta); let r = r.min(geta + (1 << self.batch)); if l >= r { continue; } if r - l == 1 << self.batch { ans = ans.merge(&self.data[u ^ self.partition(l).0].find_all(d)); } else { ans = ans.merge(&self.data[u ^ self.partition(l).0].find(l - geta, r - geta, d)); } } ans } }