# import pypyjit # pypyjit.set_param('max_unroll_recursion=-1') from collections import * from itertools import * from functools import * from heapq import * import sys,math input = sys.stdin.readline def matrix_mul(A,B,mod = None): nA = len(A) mA = len(A[0]) mB = len(B[0]) tmp = [[0]*mB for _ in range(nA)] if mod is None: for i in range(nA): for j in range(mB): tmp[i][j] = sum(A[i][k]*B[k][j] for k in range(mA)) return tmp for i in range(nA): for j in range(mB): tmp[i][j] = sum(A[i][k]*B[k][j]%mod for k in range(mA))%mod return tmp def matrix_pow(A,n,mod = None): nbit = list(str(bin(n))[2:]) nbit = [int(i) for i in nbit] N = len(A) C = [[0]*N for _ in range(N)] B = A for i in range(N): C[i][i] = 1 if mod is None: for i in range(len(nbit)): if nbit[-1-i] == 1: C = matrix_mul(C,B) B = matrix_mul(B,B) return C for i in range(len(nbit)): if nbit[-1-i] == 1: C = matrix_mul(C,B,mod) B = matrix_mul(B,B,mod) return C a,b,n = map(int,input().split()) mod = 10**9 + 7 if n==0: print(0) exit() if n==1: print(1) exit() I = [[0],[1],[(a)%mod]] A = [[0,1,0],[0,0,1],[0,b,a]] Z = matrix_pow(A,n,mod) B = matrix_mul(Z,I,mod) print(B[0][0])