// #define _GLIBCXX_DEBUG #include // clang-format off std::ostream&operator<<(std::ostream&os,std::int8_t x){return os<<(int)x;} std::ostream&operator<<(std::ostream&os,std::uint8_t x){return os<<(int)x;} std::ostream&operator<<(std::ostream&os,const __int128_t &v){if(!v)os<<"0";__int128_t tmp=v<0?(os<<"-",-v):v;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os<std::ostream &operator<<(std::ostream&os,const std::pair&x){return os<<"("<std::ostream &operator<<(std::ostream&os,const std::vector&vec){os<<'[';for(int _=0,__= vec.size();_<__;++_)os<<(_ ?", ":"")<std::ostream &operator<<(std::ostream&os,const std::set&s){os<<'{';int _=0;for(const auto &x:s)os<<(_++ ? ", " : "")<std::ostream&operator<<(std::ostream &os,const std::array &arr) {os<<'['<void print(std::ostream&os,const Tup &x,std::index_sequence){(void)(int[]){(os<(x)<<", ",0)...};} templatestd::ostream &operator<<(std::ostream&os,const std::tuple &x) {static constexpr std::size_t N = sizeof...(Args);os<<"(";if constexpr(N>=2)print(os,x,std::make_index_sequence());return os<(x)<<")";} const std::string COLOR_RESET="\033[0m",BRIGHT_GREEN="\033[1;32m",BRIGHT_RED="\033[1;31m",BRIGHT_CYAN="\033[1;36m",NORMAL_CROSSED="\033[0;9;37m",ITALIC="\033[3m",BOLD="\033[1m",RED_BACKGROUND="\033[1;41m",NORMAL_FAINT="\033[0;2m"; #define func_LINE_FILE NORMAL_FAINT<<" in "<"< #include template constexpr inline Int mod_inv(Int a, Int mod) { static_assert(std::is_signed_v); Int x= 1, y= 0, b= mod; for (Int q= 0, z= 0, c= 0; b;) z= x, c= a, x= y, y= z - y * (q= a / b), a= b, b= c - b * q; return assert(a == 1), x < 0 ? mod - (-x) % mod : x % mod; } namespace math_internal { using namespace std; using u8= uint8_t; using u32= uint32_t; using u64= uint64_t; using i64= int64_t; using u128= __uint128_t; #define CE constexpr #define IL inline #define NORM \ if (n >= mod) n-= mod; \ return n #define PLUS(U, M) \ CE IL U plus(U l, U r) const { \ if (l+= r; l >= M) l-= M; \ return l; \ } #define DIFF(U, C, M) \ CE IL U diff(U l, U r) const { \ if (l-= r; l >> C) l+= M; \ return l; \ } #define SGN(U) \ static CE IL U set(U n) { return n; } \ static CE IL U get(U n) { return n; } \ static CE IL U norm(U n) { return n; } template struct MP_Mo { u_t mod; CE MP_Mo(): mod(0), iv(0), r2(0) {} CE MP_Mo(u_t m): mod(m), iv(inv(m)), r2(-du_t(mod) % mod) {} CE IL u_t mul(u_t l, u_t r) const { return reduce(du_t(l) * r); } PLUS(u_t, mod << 1) DIFF(u_t, A, mod << 1) CE IL u_t set(u_t n) const { return mul(n, r2); } CE IL u_t get(u_t n) const { n= reduce(n); NORM; } CE IL u_t norm(u_t n) const { NORM; } private: u_t iv, r2; static CE u_t inv(u_t n, int e= 6, u_t x= 1) { return e ? inv(n, e - 1, x * (2 - x * n)) : x; } CE IL u_t reduce(const du_t &w) const { return u_t(w >> B) + mod - ((du_t(u_t(w) * iv) * mod) >> B); } }; struct MP_Na { u32 mod; CE MP_Na(): mod(0){}; CE MP_Na(u32 m): mod(m) {} CE IL u32 mul(u32 l, u32 r) const { return u64(l) * r % mod; } PLUS(u32, mod) DIFF(u32, 31, mod) SGN(u32) }; struct MP_Br { // mod < 2^31 u32 mod; CE MP_Br(): mod(0), s(0), x(0) {} CE MP_Br(u32 m): mod(m), s(31 - __builtin_clz(m - 1) + 64), x(((u128(1) << s) + m - 1) / m) {} CE IL u32 mul(u32 l, u32 r) const { return rem(u64(l) * r); } PLUS(u32, mod) DIFF(u32, 31, mod) SGN(u32) private: u8 s; u64 x; CE IL u64 quo(u64 n) const { return (u128(x) * n) >> s; } CE IL u32 rem(u64 n) const { return n - quo(n) * mod; } }; struct MP_Br2 { // 2^20 < mod <= 2^41 u64 mod; CE MP_Br2(): mod(0), x(0) {} CE MP_Br2(u64 m): mod(m), x((u128(1) << 84) / m) {} CE IL u64 mul(u64 l, u64 r) const { return rem(u128(l) * r); } PLUS(u64, mod << 1) DIFF(u64, 63, mod << 1) static CE IL u64 set(u64 n) { return n; } CE IL u64 get(u64 n) const { NORM; } CE IL u64 norm(u64 n) const { NORM; } private: u64 x; CE IL u128 quo(const u128 &n) const { return (n * x) >> 84; } CE IL u64 rem(const u128 &n) const { return n - quo(n) * mod; } }; struct MP_D2B1 { u8 s; u64 mod, d, v; CE MP_D2B1(): s(0), mod(0), d(0), v(0) {} CE MP_D2B1(u64 m): s(__builtin_clzll(m)), mod(m), d(m << s), v(u128(-1) / d) {} CE IL u64 mul(u64 l, u64 r) const { return rem((u128(l) * r) << s) >> s; } PLUS(u64, mod) DIFF(u64, 63, mod) SGN(u64) private: CE IL u64 rem(const u128 &u) const { u128 q= (u >> 64) * v + u; u64 r= u64(u) - (q >> 64) * d - d; if (r > u64(q)) r+= d; if (r >= d) r-= d; return r; } }; template CE u_t pow(u_t x, u64 k, const MP &md) { for (u_t ret= md.set(1);; x= md.mul(x, x)) if (k & 1 ? ret= md.mul(ret, x) : 0; !(k>>= 1)) return ret; } #undef NORM #undef PLUS #undef DIFF #undef SGN #undef CE } namespace math_internal { #define CE constexpr struct m_b {}; struct s_b: m_b {}; template CE bool is_modint_v= is_base_of_v; template CE bool is_staticmodint_v= is_base_of_v; template struct SB: s_b { protected: static CE MP md= MP(MOD); }; template struct MInt: public B { using Uint= U; static CE inline auto mod() { return B::md.mod; } CE MInt(): x(0) {} CE MInt(const MInt &r): x(r.x) {} template , nullptr_t> = nullptr> CE MInt(T v): x(B::md.set(v.val() % B::md.mod)) {} template , nullptr_t> = nullptr> CE MInt(T n): x(B::md.set((n < 0 ? ((n= (-n) % B::md.mod) ? B::md.mod - n : n) : n % B::md.mod))) {} CE MInt operator-() const { return MInt() - *this; } #define FUNC(name, op) \ CE MInt name const { \ MInt ret; \ ret.x= op; \ return ret; \ } FUNC(operator+(const MInt &r), B::md.plus(x, r.x)) FUNC(operator-(const MInt &r), B::md.diff(x, r.x)) FUNC(operator*(const MInt &r), B::md.mul(x, r.x)) FUNC(pow(u64 k), math_internal::pow(x, k, B::md)) #undef FUNC CE MInt operator/(const MInt &r) const { return *this * r.inv(); } CE MInt &operator+=(const MInt &r) { return *this= *this + r; } CE MInt &operator-=(const MInt &r) { return *this= *this - r; } CE MInt &operator*=(const MInt &r) { return *this= *this * r; } CE MInt &operator/=(const MInt &r) { return *this= *this / r; } CE bool operator==(const MInt &r) const { return B::md.norm(x) == B::md.norm(r.x); } CE bool operator!=(const MInt &r) const { return !(*this == r); } CE bool operator<(const MInt &r) const { return B::md.norm(x) < B::md.norm(r.x); } CE inline MInt inv() const { return mod_inv(val(), B::md.mod); } CE inline Uint val() const { return B::md.get(x); } friend ostream &operator<<(ostream &os, const MInt &r) { return os << r.val(); } friend istream &operator>>(istream &is, MInt &r) { i64 v; return is >> v, r= MInt(v), is; } private: Uint x; }; template using ModInt= conditional_t < (MOD < (1 << 30)) & MOD, MInt, MOD>>, conditional_t < (MOD < (1ull << 62)) & MOD, MInt, MOD>>, conditional_t>, conditional_t>, conditional_t>, MInt>>>>>>; #undef CE } using math_internal::ModInt, math_internal::is_modint_v, math_internal::is_staticmodint_v; template mod_t get_inv(int n) { static_assert(is_modint_v); static const auto m= mod_t::mod(); static mod_t dat[LM]; static int l= 1; if (l == 1) dat[l++]= 1; while (l <= n) dat[l++]= dat[m % l] * (m - m / l); return dat[n]; } template class Automaton { std::vector table; std::vector info; std::vector alph; const int m; template