#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include using namespace std; // 型名の短縮 using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair; using pll = pair; using pil = pair; using pli = pair; using vi = vector; using vvi = vector; using vvvi = vector; using vl = vector; using vvl = vector; using vvvl = vector; using vb = vector; using vvb = vector; using vvvb = vector; using vc = vector; using vvc = vector; using vvvc = vector; using vd = vector; using vvd = vector; using vvvd = vector; template using priority_queue_rev = priority_queue, greater>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) const vi DY = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004004004004004LL; double EPS = 1e-15; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x)) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x)) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 // 汎用関数の定義 template inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template inline T get(T set, int i) { return (set >> i) & T(1); } // 演算子オーバーロード template inline istream& operator>>(istream& is, pair& p) { is >> p.first >> p.second; return is; } template inline istream& operator>>(istream& is, vector& v) { repea(x, v) is >> x; return is; } template inline vector& operator--(vector& v) { repea(x, v) --x; return v; } template inline vector& operator++(vector& v) { repea(x, v) ++x; return v; } // 手元環境(Visual Studio) #ifdef _MSC_VER #include "local.hpp" // 提出用(gcc) #else inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define gcd __gcd #define dump(...) #define dumpel(v) #define dump_list(v) #define dump_list2D(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) while (1) cout << "OLE"; } #endif #endif // 折りたたみ用 #if __has_include() #include using namespace atcoder; //using mint = modint1000000007; using mint = modint998244353; //using mint = modint; // mint::set_mod(m); istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } using vm = vector; using vvm = vector; using vvvm = vector; #endif //【行列】 /* * Matrix(int m, int n) : O(m n) * m * n 零行列で初期化する. * * Matrix(int n) : O(n^2) * n * n 単位行列で初期化する. * * Matrix(vvT a) : O(m n) * 配列 a の要素で初期化する. * * bool empty() : O(1) * 行列が空かを返す. * * A + B : O(m n) * m * n 行列 A, B の和を返す.+= も使用可. * * A - B : O(m n) * m * n 行列 A, B の差を返す.-= も使用可. * * c * A / A * c : O(m n) * m * n 行列 A とスカラー c のスカラー積を返す.*= も使用可. * * A * x : O(m n) * m * n 行列 A と n 次元列ベクトル x の積を返す. * * x * A : O(m n) * m 次元行ベクトル x と m * n 行列 A の積を返す. * * A * B : O(l m n) * l * m 行列 A と m * n 行列 B の積を返す. * * Mat pow(ll d) : O(n^3 log d) * 自身を d 乗した行列を返す. */ template struct Matrix { int m, n; // 行列のサイズ(m 行 n 列) vector> v; // 行列の成分 // コンストラクタ(初期化なし,零行列,単位行列,二次元配列) Matrix() : m(0), n(0) {} Matrix(const int& m_, const int& n_) : m(m_), n(n_), v(m_, vector(n_)) {} Matrix(const int& n_) : m(n_), n(n_), v(n_, vector(n_)) { rep(i, n) v[i][i] = T(1); } Matrix(const vector>& a) : m(sz(a)), n(sz(a[0])), v(a) {} // 代入 Matrix(const Matrix& b) = default; Matrix& operator=(const Matrix& b) = default; // 入力 friend istream& operator>>(istream& is, Matrix& a) { rep(i, a.m) rep(j, a.n) is >> a.v[i][j]; return is; } // アクセス vector const& operator[](int i) const { return v[i]; } vector& operator[](int i) { return v[i]; } // 空か bool empty() { return min(m, n) == 0; } // 比較 bool operator==(const Matrix& b) const { return m == b.m && n == b.n && v == b.v; } bool operator!=(const Matrix& b) const { return !(*this == b); } // 加算,減算,スカラー倍 Matrix& operator+=(const Matrix& b) { rep(i, m) rep(j, n) v[i][j] += b.v[i][j]; return *this; } Matrix& operator-=(const Matrix& b) { rep(i, m) rep(j, n) v[i][j] -= b.v[i][j]; return *this; } Matrix& operator*=(const T& c) { rep(i, m) rep(j, n) v[i][j] *= c; return *this; } Matrix operator+(const Matrix& b) const { return Matrix(*this) += b; } Matrix operator-(const Matrix& b) const { return Matrix(*this) -= b; } Matrix operator*(const T& c) const { return Matrix(*this) *= c; } friend Matrix operator*(const T& c, const Matrix& a) { return a * c; } Matrix operator-() const { return Matrix(*this) *= T(-1); } // 行列ベクトル積 : O(m n) vector operator*(const vector& x) const { vector y(m); rep(i, m) rep(j, n) y[i] += v[i][j] * x[j]; return y; } // ベクトル行列積 : O(m n) friend vector operator*(const vector& x, const Matrix& a) { vector y(a.n); rep(i, a.m) rep(j, a.n) y[j] += x[i] * a.v[i][j]; return y; } // 積:O(n^3) Matrix operator*(const Matrix& b) const { // verify : https://judge.yosupo.jp/problem/matrix_product Matrix res(m, b.n); rep(i, res.m) rep(j, res.n) rep(k, n) res.v[i][j] += v[i][k] * b.v[k][j]; return res; } Matrix& operator*=(const Matrix& b) { *this = *this * b; return *this; } // 累乗:O(n^3 log d) Matrix pow(ll d) const { Matrix res(n), pow2 = *this; while (d > 0) { if ((d & 1) != 0) res *= pow2; pow2 *= pow2; d /= 2; } return res; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const Matrix& a) { rep(i, a.m) { os << "["; rep(j, a.n) os << a.v[i][j] << (j < a.n - 1 ? " " : "]"); if (i < a.m - 1) os << "\n"; } return os; } #endif }; //【行列乗算 左作用付き ベクトル 集合】 int NB01 = 2; using SB01 = vm; using FB01 = Matrix; SB01 actB01(FB01 f, SB01 x) { return f * x; } FB01 compB01(FB01 f, FB01 g) { return f * g; } FB01 idB01() { return Matrix(NB01); } #define MatrixLMul_Vector_mset SB01, FB01, actB01, compB01, idB01 // 参考 : https://qiita.com/ganyariya/items/df35d253726269bda436 struct Hash { size_t operator()(const vm& p) const { auto hash1 = hash{}(p[0].val()); auto hash2 = hash{}(p[1].val()); size_t seed = 0; seed ^= hash1 + 0x9e3779b9 + (seed << 6) + (seed >> 2); seed ^= hash2 + 0x9e3779b9 + (seed << 6) + (seed >> 2); return seed; } }; //【離散対数問題(M-集合)】O(√N) /* * f^n s = t を満たす N 未満の最小の非負整数 n を返す(存在しなければ INFL) * f[s,t] は M-集合 (S, F, act, comp, id) の F[S,S] の元とする. * HASH はハッシュ関数 size_t operator()(const S& p) の定義された関数オブジェクトとする. */ template ll discrete_logarithm(const F& f, const S& s, const S& t, ll N) { // 参考 : https://maspypy.com/%e3%83%a2%e3%83%8e%e3%82%a4%e3%83%89%e4%bd%9c%e7%94%a8%e3%81%ab%e9%96%a2%e3%81%99%e3%82%8b%e9%9b%a2%e6%95%a3%e5%af%be%e6%95%b0%e5%95%8f%e9%a1%8c int m = (int)(sqrt(N) + 1e-12) + 1; // T : {f^i t | i∈[1..m]} unordered_set T; S f_t(t); repi(i, 1, m) { if (T.count(f_t)) break; T.insert(f_t); f_t = act(f, f_t); } // fm : f^m F fm(id()), pow2 = f; int m_tmp(m); while (m_tmp > 0) { if ((m_tmp & 1) != 0) fm = comp(fm, pow2); pow2 = comp(pow2, pow2); m_tmp /= 2; } S fm_s_bak(s); int fail_cnt = 0; repi(k, 1, m) { // fm_s : f^(m k) s, fm_s_bak : f^(m (k-1)) s S fm_s = act(fm, fm_s_bak); // f^(m k) s ∈ T となったなら,∃i∈[0..m), f^(m (k-1) + i) s = t となることが期待される. if (T.count(fm_s)) { S f_s(fm_s_bak); // f^(m (k-1) + i) s = t となっているかを全て調べる. rep(i, m) { // f_s : f^(m (k-1) + i) s if (f_s == t) return (ll)m * (k - 1) + i; f_s = act(f, f_s); } // t → f t なる有向辺をもった functional graph S を考える. // 先の手続きに失敗したとしても,いま初めて t を含むループに s から合流してきた可能性が残されている. // だがもしもう一度失敗したならば,t がループに含まれていないことを意味するので非存在が確定する. if (++fail_cnt == 2) return INFL; } fm_s_bak = fm_s; } return INFL; } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); mint a, b, p, q; cin >> a >> b >> p >> q; FB01 f({ {a, -b}, {1, 0} }); SB01 s({ a, 2 }); SB01 t({ p, q }); cout << discrete_logarithm(f, s, t, (ll)1e10 + 1) + 1 << endl; }