#pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; //#define int long long typedef long long ll; typedef unsigned long long ul; typedef unsigned int ui; //ll mod = 1; //constexpr ll mod = 998244353; constexpr ll mod = 1000000007; const ll INF = mod * mod; typedef pairP; #define rep(i,n) for(int i=0;i=0;i--) #define Rep(i,sta,n) for(int i=sta;i=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) #define all(v) (v).begin(),(v).end() typedef pair LP; using ld = long double; typedef pair LDP; const ld eps = 1e-10; const ld pi = acosl(-1.0); template void chmin(T& a, T b) { a = min(a, b); } template void chmax(T& a, T b) { a = max(a, b); } template vector vmerge(vector& a, vector& b) { vector res; int ida = 0, idb = 0; while (ida < a.size() || idb < b.size()) { if (idb == b.size()) { res.push_back(a[ida]); ida++; } else if (ida == a.size()) { res.push_back(b[idb]); idb++; } else { if (a[ida] < b[idb]) { res.push_back(a[ida]); ida++; } else { res.push_back(b[idb]); idb++; } } } return res; } template void cinarray(vector& v) { rep(i, v.size())cin >> v[i]; } template void coutarray(vector& v) { rep(i, v.size()) { if (i > 0)cout << " "; cout << v[i]; } cout << "\n"; } ll mod_pow(ll x, ll n, ll m = mod) { if (n < 0) { ll res = mod_pow(x, -n, m); return mod_pow(res, m - 2, m); } if (abs(x) >= m)x %= m; if (x < 0)x += m; //if (x == 0)return 0; ll res = 1; while (n) { if (n & 1)res = res * x % m; x = x * x % m; n >>= 1; } return res; } //mod should be <2^31 struct modint { int n; modint() :n(0) { ; } modint(ll m) { if (m < 0 || mod <= m) { m %= mod; if (m < 0)m += mod; } n = m; } operator int() { return n; } }; bool operator==(modint a, modint b) { return a.n == b.n; } bool operator<(modint a, modint b) { return a.n < b.n; } modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= (int)mod; return a; } modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += (int)mod; return a; } modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; } modint operator+(modint a, modint b) { return a += b; } modint operator-(modint a, modint b) { return a -= b; } modint operator*(modint a, modint b) { return a *= b; } modint operator^(modint a, ll n) { if (n == 0)return modint(1); modint res = (a * a) ^ (n / 2); if (n % 2)res = res * a; return res; } ll inv(ll a, ll p) { return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p); } modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); } modint operator/=(modint& a, modint b) { a = a / b; return a; } const int max_n = 1 << 20; modint fact[max_n], factinv[max_n]; void init_f() { fact[0] = modint(1); for (int i = 0; i < max_n - 1; i++) { fact[i + 1] = fact[i] * modint(i + 1); } factinv[max_n - 1] = modint(1) / fact[max_n - 1]; for (int i = max_n - 2; i >= 0; i--) { factinv[i] = factinv[i + 1] * modint(i + 1); } } modint comb(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[b] * factinv[a - b]; } modint combP(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[a - b]; } ll gcd(ll a, ll b) { a = abs(a); b = abs(b); if (a < b)swap(a, b); while (b) { ll r = a % b; a = b; b = r; } return a; } template void addv(vector& v, int loc, T val) { if (loc >= v.size())v.resize(loc + 1, 0); v[loc] += val; } /*const int mn = 2000005; bool isp[mn]; vector ps; void init() { fill(isp + 2, isp + mn, true); for (int i = 2; i < mn; i++) { if (!isp[i])continue; ps.push_back(i); for (int j = 2 * i; j < mn; j += i) { isp[j] = false; } } }*/ //[,val) template auto prev_itr(set& st, T val) { auto res = st.lower_bound(val); if (res == st.begin())return st.end(); res--; return res; } //[val,) template auto next_itr(set& st, T val) { auto res = st.lower_bound(val); return res; } using mP = pair; mP operator+(mP a, mP b) { return { a.first + b.first,a.second + b.second }; } mP operator+=(mP& a, mP b) { a = a + b; return a; } mP operator-(mP a, mP b) { return { a.first - b.first,a.second - b.second }; } mP operator-=(mP& a, mP b) { a = a - b; return a; } LP operator+(LP a, LP b) { return { a.first + b.first,a.second + b.second }; } LP operator+=(LP& a, LP b) { a = a + b; return a; } LP operator-(LP a, LP b) { return { a.first - b.first,a.second - b.second }; } LP operator-=(LP& a, LP b) { a = a - b; return a; } mt19937 mt(time(0)); const string drul = "DRUL"; string senw = "SENW"; //DRUL,or SENW //int dx[4] = { 1,0,-1,0 }; //int dy[4] = { 0,1,0,-1 }; //----------------------------------------- typedef complex Point; ld dot(Point a, Point b) { return real(conj(a) * b); } ld cross(Point a, Point b) { return imag(conj(a) * b); } namespace std { bool operator<(const Point& lhs, const Point& rhs) { return lhs.real() == rhs.real() ? lhs.imag() < rhs.imag() : lhs.real() < rhs.real(); } } struct Line { Point a, b; }; struct Circle { Point p; ld r; }; int ccw(Point a, Point b, Point c) { b -= a; c -= a; if (cross(b, c) > eps)return 1;//counter clockwise if (cross(b, c) < -eps)return -1;//clock wise if (dot(b, c) < 0)return 2;//c--a--b on line if (norm(b) < norm(c))return -2;//a--b--c on line return 0; //a--c--b on line } //直線と直線の交点 //平行な2直線に対しては使うな!!!! Point is_ll(Line s, Line t) { Point sv = s.b - s.a; Point tv = t.b - t.a; return s.a + sv * cross(tv, t.a - s.a) / cross(tv, sv); } //2点の垂直二等分線 Line mid_line(Point a, Point b) { ld mx = (real(a) + real(b)) / 2.0, my = (imag(a) + imag(b)) / 2.0; ld dx = real(b) - real(a), dy = imag(b) - imag(a); swap(dx, dy); dx = -dx; Point le = { mx - dx,my - dy }, ri = { mx + dx,my + dy }; //a,le,ri is counter clockwise return { le,ri }; } Point getp() { ld x, y; cin >> x >> y; return Point{ x,y }; } void solve() { ld x, y, t; cin >> x >> y >> t; t = 2 * pi * t / 360.0; Point s1, g1, s2, g2; s1 = getp(); s2 = getp(); g1 = getp(); g2 = getp(); auto trans = [&](Point& p) { p -= Point{ x,y }; p *= Point{ cos(-t),sin(-t) }; }; trans(s1); trans(g1); trans(s2); trans(g2); //cout << s1 << " " << g1 << " " << s2 << " " << g2 << "\n"; Point ansp;ld anst; anst = arg(s1 - s2) - arg(g1 - g2); ansp = s1 - g1*Point{ cos(anst),sin(anst) }; ansp *= Point{ cos(t),sin(t) }; anst += t; ansp += Point{ x,y }; ld ansx = ansp.real(); ld ansy = ansp.imag(); anst = anst * 360 / (2 * pi); cout << ansx << " " << ansy << " " << anst << "\n"; } signed main() { ios::sync_with_stdio(false); cin.tie(0); cout << fixed << setprecision(12); //init_f(); //init(); //while(true) //expr(); //int t; cin >> t; rep(i, t) solve(); return 0; }