package main import ( "bufio" "fmt" "io" "os" "strconv" ) var iost *Iost type Iost struct { Scanner *bufio.Scanner Writer *bufio.Writer } func NewIost(fp io.Reader, wfp io.Writer) *Iost { const BufSize = 2000005 scanner := bufio.NewScanner(fp) scanner.Split(bufio.ScanWords) scanner.Buffer(make([]byte, BufSize), BufSize) return &Iost{Scanner: scanner, Writer: bufio.NewWriter(wfp)} } func (i *Iost) Text() string { if !i.Scanner.Scan() { panic("scan failed") } return i.Scanner.Text() } func (i *Iost) Atoi(s string) int { x, _ := strconv.Atoi(s); return x } func (i *Iost) GetNextInt() int { return i.Atoi(i.Text()) } func (i *Iost) Atoi64(s string) int64 { x, _ := strconv.ParseInt(s, 10, 64); return x } func (i *Iost) GetNextInt64() int64 { return i.Atoi64(i.Text()) } func (i *Iost) Atof64(s string) float64 { x, _ := strconv.ParseFloat(s, 64); return x } func (i *Iost) GetNextFloat64() float64 { return i.Atof64(i.Text()) } func (i *Iost) Print(x ...interface{}) { fmt.Fprint(i.Writer, x...) } func (i *Iost) Printf(s string, x ...interface{}) { fmt.Fprintf(i.Writer, s, x...) } func (i *Iost) Println(x ...interface{}) { fmt.Fprintln(i.Writer, x...) } func isLocal() bool { return os.Getenv("NICKEL") == "BACK" } func main() { fp := os.Stdin wfp := os.Stdout if isLocal() { fp, _ = os.Open(os.Getenv("WELL_EVERYBODY_LIES_TOO_MUCH")) } iost = NewIost(fp, wfp) defer func() { iost.Writer.Flush() }() solve() } func solve() { SetMod(Mod998244353) n := iost.GetNextInt() q := iost.GetNextInt() aa := make([]int, q) bb := make([]int, q) cc := make([]int, q) ee := make([][][2]int, n) for i := 0; i < q; i++ { aa[i] = iost.GetNextInt() - 1 bb[i] = iost.GetNextInt() - 1 cc[i] = iost.GetNextInt() ee[aa[i]] = append(ee[aa[i]], [2]int{bb[i], cc[i]}) ee[bb[i]] = append(ee[bb[i]], [2]int{aa[i], cc[i]}) } visited := make([]bool, n) lier := make([]int, n) g := 0 for i := 0; i < n; i++ { if visited[i] { continue } g++ visited[i] = true q := make([]int, 0) q = append(q, i) for len(q) > 0 { p := q[0] q = q[1:] for _, e := range ee[p] { if visited[e[0]] { if lier[e[0]] != lier[p]^e[1] { iost.Println(0) return } continue } visited[e[0]] = true lier[e[0]] = lier[p] ^ e[1] q = append(q, e[0]) } } } iost.Println(Mint(2).Pow(Mint(g))) } // Dsu Data structures and algorithms for disjoint set union problems type Dsu struct { n int parentOrSize []int } // NewDsu Constructor func NewDsu(n int) *Dsu { p := make([]int, n) for i := 0; i < n; i++ { p[i] = -1 } return &Dsu{parentOrSize: p, n: n} } // Merge adds an edge (a, b). func (d *Dsu) Merge(a, b int, meld ...func(int, int)) int { x := d.Leader(a) y := d.Leader(b) if x == y { return x } if -d.parentOrSize[x] < -d.parentOrSize[y] { x, y = y, x } d.parentOrSize[x] += d.parentOrSize[y] d.parentOrSize[y] = x for _, f := range meld { f(x, y) } return x } // Same returns whether the vertices a and b are in the same connected component. func (d *Dsu) Same(a, b int) bool { return d.Leader(a) == d.Leader(b) } // Leader returns the representative of the connected component that contains the vertex a. func (d *Dsu) Leader(a int) int { if d.parentOrSize[a] < 0 { return a } d.parentOrSize[a] = d.Leader(d.parentOrSize[a]) return d.parentOrSize[a] } // Size returns the size of the connected component that contains the vertex a. func (d *Dsu) Size(a int) int { return -d.parentOrSize[d.Leader(a)] } // Groups divides the graph into connected components and returns the list of them. func (d *Dsu) Groups() [][]int { result := make([][]int, d.n) groups := make([][]int, 0) for i := 0; i < d.n; i++ { l := d.Leader(i) result[l] = append(result[l], i) } for i := 0; i < d.n; i++ { if result[i] == nil { continue } groups = append(groups, result[i]) } return groups } // Mod constants. const ( Mod1000000007 = 1000000007 Mod998244353 = 998244353 ) var ( mod Mint fmod func(Mint) Mint ) // Mint treats the modular arithmetic type Mint int64 // SetMod sets the mod. It must be called first. func SetMod(newmod Mint) { switch newmod { case Mod1000000007: fmod = staticMod1000000007 case Mod998244353: fmod = staticMod998244353 default: mod = newmod fmod = dynamicMod } } func dynamicMod(m Mint) Mint { m %= mod if m < 0 { return m + mod } return m } func staticMod1000000007(m Mint) Mint { m %= Mod1000000007 if m < 0 { return m + Mod1000000007 } return m } func staticMod998244353(m Mint) Mint { m %= Mod998244353 if m < 0 { return m + Mod998244353 } return m } // Mod returns m % mod. func (m Mint) Mod() Mint { return fmod(m) } // Inv returns modular multiplicative inverse func (m Mint) Inv() Mint { return m.Pow(Mint(0).Sub(2)) } // Pow returns m^n func (m Mint) Pow(n Mint) Mint { p := Mint(1) for n > 0 { if n&1 == 1 { p.MulAs(m) } m.MulAs(m) n >>= 1 } return p } // Add returns m+x func (m Mint) Add(x Mint) Mint { return (m + x).Mod() } // Sub returns m-x func (m Mint) Sub(x Mint) Mint { return (m - x).Mod() } // Mul returns m*x func (m Mint) Mul(x Mint) Mint { return (m * x).Mod() } // Div returns m/x func (m Mint) Div(x Mint) Mint { return m.Mul(x.Inv()) } // AddAs assigns *m + x to *m and returns m func (m *Mint) AddAs(x Mint) *Mint { *m = m.Add(x) return m } // SubAs assigns *m - x to *m and returns m func (m *Mint) SubAs(x Mint) *Mint { *m = m.Sub(x) return m } // MulAs assigns *m * x to *m and returns m func (m *Mint) MulAs(x Mint) *Mint { *m = m.Mul(x) return m } // DivAs assigns *m / x to *m and returns m func (m *Mint) DivAs(x Mint) *Mint { *m = m.Div(x) return m }