#include using namespace std; #define rep(i, n) for (int i = 0; i < (n); i++) #define per(i, n) for (int i = (n)-1; i >= 0; i--) #define rep2(i, l, r) for (int i = (l); i < (r); i++) #define per2(i, l, r) for (int i = (r)-1; i >= (l); i--) #define each(e, v) for (auto &e : v) #define MM << " " << #define pb push_back #define eb emplace_back #define all(x) begin(x), end(x) #define rall(x) rbegin(x), rend(x) #define sz(x) (int)x.size() using ll = long long; using pii = pair; using pil = pair; using pli = pair; using pll = pair; template using minheap = priority_queue, greater>; template using maxheap = priority_queue; template bool chmax(T &x, const T &y) { return (x < y) ? (x = y, true) : false; } template bool chmin(T &x, const T &y) { return (x > y) ? (x = y, true) : false; } template int flg(T x, int i) { return (x >> i) & 1; } int popcount(int x) { return __builtin_popcount(x); } int popcount(ll x) { return __builtin_popcountll(x); } int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template void print(const vector &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } template void printn(const vector &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << '\n'; } template int lb(const vector &v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template int ub(const vector &v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template void rearrange(vector &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } template vector id_sort(const vector &v, bool greater = false) { int n = v.size(); vector ret(n); iota(begin(ret), end(ret), 0); sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; }); return ret; } template void reorder(vector &a, const vector &ord) { int n = a.size(); vector b(n); for (int i = 0; i < n; i++) b[i] = a[ord[i]]; swap(a, b); } template T floor(T x, T y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x >= 0 ? x / y : (x - y + 1) / y); } template T ceil(T x, T y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x >= 0 ? (x + y - 1) / y : x / y); } template pair operator+(const pair &p, const pair &q) { return make_pair(p.first + q.first, p.second + q.second); } template pair operator-(const pair &p, const pair &q) { return make_pair(p.first - q.first, p.second - q.second); } template istream &operator>>(istream &is, pair &p) { S a; T b; is >> a >> b; p = make_pair(a, b); return is; } template ostream &operator<<(ostream &os, const pair &p) { return os << p.first << ' ' << p.second; } struct io_setup { io_setup() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); } } io_setup; const int inf = (1 << 30) - 1; const ll INF = (1LL << 60) - 1; // const int MOD = 1000000007; const int MOD = 998244353; template struct Segment_Tree { using M = typename Monoid::V; int n, m; vector seg; // f(f(a,b),c) = f(a,f(b,c)), f(e1,a) = f(a,e1) = a Segment_Tree(const vector &v) : n(v.size()) { m = 1; while (m < n) m <<= 1; seg.assign(2 * m, Monoid::id); copy(begin(v), end(v), begin(seg) + m); for (int i = m - 1; i > 0; i--) seg[i] = Monoid::merge(seg[2 * i], seg[2 * i + 1]); } Segment_Tree(int n, const M &x) : Segment_Tree(vector(n, x)) {} void update(int i, const M &x, bool apply = false) { seg[i + m] = apply ? Monoid::merge(seg[i + m], x) : x; i += m; while (i >>= 1) seg[i] = Monoid::merge(seg[2 * i], seg[2 * i + 1]); } M query(int l, int r) const { l = max(l, 0), r = min(r, n); M L = Monoid::id, R = Monoid::id; l += m, r += m; while (l < r) { if (l & 1) L = Monoid::merge(L, seg[l++]); if (r & 1) R = Monoid::merge(seg[--r], R); l >>= 1, r >>= 1; } return Monoid::merge(L, R); } M operator[](int i) const { return seg[i + m]; } template int find_subtree(int i, const C &check, M &x, int type) const { while (i < m) { M nxt = type ? Monoid::merge(seg[2 * i + type], x) : Monoid::merge(x, seg[2 * i + type]); if (check(nxt)) { i = 2 * i + type; } else { x = nxt; i = 2 * i + (type ^ 1); } } return i - m; } // check(区間 [l,r] での演算結果) を満たす最小の r (存在しなければ n) template int find_first(int l, const C &check) const { M L = Monoid::id; int a = l + m, b = 2 * m; while (a < b) { if (a & 1) { M nxt = Monoid::merge(L, seg[a]); if (check(nxt)) return find_subtree(a, check, L, 0); L = nxt; a++; } a >>= 1, b >>= 1; } return n; } // check((区間 [l,r) での演算結果)) を満たす最大の l (存在しなければ -1) template int find_last(int r, const C &check) const { M R = Monoid::id; int a = m, b = r + m; while (a < b) { if ((b & 1) || a == 1) { M nxt = Monoid::merge(seg[--b], R); if (check(nxt)) return find_subtree(b, check, R, 1); R = nxt; } a >>= 1, b >>= 1; } return -1; } }; // sum template struct Plus_Monoid { using V = T; static constexpr V merge(V l, V r) { return l + r; }; static const V id; }; template const T Plus_Monoid::id = 0; // min template struct Min_Monoid { using V = T; static constexpr V merge(V l, V r) { return min(l, r); }; static const V id; }; template const T Min_Monoid::id = numeric_limits::max(); // max template struct Max_Monoid { using V = T; static constexpr V merge(V l, V r) { return max(l, r); }; static const V id; }; template const T Max_Monoid::id = numeric_limits::min(); // 代入 template struct Update_Monoid { using V = T; static constexpr V merge(V l, V r) { if (l == id) return r; if (r == id) return l; return r; } static const V id; }; template const T Update_Monoid::id = numeric_limits::max(); // min count (T:最大値の型、S:個数の型) template struct Min_Count_Monoid { using V = pair; static constexpr V merge(V l, V r) { if (l.first < r.first) return l; if (l.first > r.first) return r; return V(l.first, l.second + r.second); } static const V id; }; template const pair Min_Count_Monoid::id = make_pair(numeric_limits::max(), 0); // max count (T:最大値の型、S:個数の型) template struct Max_Count_Monoid { using V = pair; static constexpr V merge(V l, V r) { if (l.first > r.first) return l; if (l.first < r.first) return r; return V(l.first, l.second + r.second); } static const V id; }; template const pair Max_Count_Monoid::id = make_pair(numeric_limits::min(), 0); // 一次関数 ax+b の合成 (左から順に作用) template struct Affine_Monoid { using V = pair; static constexpr V merge(V l, V r) { return V(l.first * r.first, l.second * r.first + r.second); }; static const V id; }; template const pair Affine_Monoid::id = make_pair(1, 0); // モノイドの直積 template struct Cartesian_Product_Monoid { using V1 = typename Monoid_1::V; using V2 = typename Monoid_2::V; using V = pair; static constexpr V merge(V l, V r) { return V(Monoid_1::merge(l.first, r.first), Monoid_2::merge(l.second, r.second)); } static const V id; }; template const pair Cartesian_Product_Monoid::id = make_pair(Monoid_1::id, Monoid_2::id); // range add range min template struct Min_Plus_Acted_Monoid { using Monoid = Min_Monoid; using Operator = Plus_Monoid; using M = T; using O = T; static constexpr M merge(M l, O r) { return l + r; }; }; // range add range max template struct Max_Plus_Acted_Monoid { using Monoid = Max_Monoid; using Operator = Plus_Monoid; using M = T; using O = T; static constexpr M merge(M l, O r) { return l + r; }; }; // range add range min count (T:最小値の型、S:個数の型) template struct Min_Count_Add_Acted_Monoid { using Monoid = Min_Count_Monoid; using Operator = Plus_Monoid; using M = pair; using O = T; static constexpr M merge(M l, O r) { return make_pair(l.first + r, l.second); }; }; // range add range max count (T:最大値の型、S:個数の型) template struct Max_Count_Add_Acted_Monoid { using Monoid = Max_Count_Monoid; using Operator = Plus_Monoid; using M = pair; using O = T; static constexpr M merge(M l, O r) { return make_pair(l.first + r, l.second); }; }; // range add range sum template struct Plus_Plus_Monoid { using Monoid = Cartesian_Product_Monoid, Plus_Monoid>; using Operator = Plus_Monoid; using M = pair; using O = T; static constexpr M merge(M l, O r) { return M(l.first + r * l.second, l.second); } }; // range update range sum template struct Plus_Update_Monoid { using Monoid = Cartesian_Product_Monoid, Plus_Monoid>; using Operator = Update_Monoid; using M = pair; using O = T; static constexpr M merge(M l, O r) { return M(r * l.second, l.second); } }; // range update range min template struct Min_Update_Monoid { using Monoid = Min_Monoid; using Operator = Update_Monoid; using M = T; using O = T; static constexpr M merge(M l, M r) { return r == Operator::id ? l : r; } }; // range update range max template struct Max_Update_Monoid { using Monoid = Max_Monoid; using Operator = Update_Monoid; using M = T; using O = T; static constexpr M merge(M l, M r) { return r == Operator::id ? l : r; } }; // range affine range sum template struct Plus_Affine_Acted_Monoid { using Monoid = Cartesian_Product_Monoid, Plus_Monoid>; using Operator = Affine_Monoid; using M = pair; using O = pair; static constexpr M merge(M l, O r) { return M(r.first * l.first + r.second * l.second, l.second); }; }; void solve() { int N, Q; string S; cin >> N >> Q >> S; vector a(N); a[N - 1] = 1; per(i, N - 1) { a[i] = 1; if (S[i] == S[i + 1]) a[i] = a[i + 1] + 1; } vector s(N + 1, 0); rep(i, N) { s[i + 1] = s[i]; if (S[i] == '0') s[i + 1]++; if (S[i] == '1') s[i + 1]--; } // print(a), print(s); Segment_Tree> seg(a); while (Q--) { int L, R, K; cin >> L >> R >> K; L--; if (seg.query(L, R - K + 1) < K) { cout << R - L << '\n'; } else { int t = s[R] - s[L]; t %= (2 * K - 1); // cout << "! " << t << '\n'; if (t < 0) t += 2 * K - 1; if (t >= K) t -= 2 * K - 1; cout << 2 * (K - 1) - abs(t) << '\n'; } } } int main() { int T = 1; // cin >> T; while (T--) solve(); }