import sys import time import random import math import heapq from collections import defaultdict random.seed(42) INF = 10**18 alpha = 5 alpha2 = alpha * alpha def eprint(*args, **kwargs): print(*args, file=sys.stderr, **kwargs) class TimeKeeper: """ 時間を管理するクラス 時間制限を秒単位で指定してインスタンスをつくる """ def __init__(self, time_threshold) -> None: self.start_time_ = time.time() self.time_threshold_ = time_threshold def isTimeOver(self) -> bool: """ インスタンスを生成した時から指定した時間制限を超過したか判断する 超過している場合にTrue """ return time.time() - self.start_time_ - self.time_threshold_ >= 0 def time_msec(self) -> int: """経過時間をミリ秒単位で返す""" return int((time.time() - self.start_time_) * 1000) def time_sec(self) -> int: """経過時間を秒単位で返す(time_msecの使用を推奨)""" return time.time()-self.start_time_ class Kmeans: def __init__(self, X:list, n_data:int, k:int): self.x = [[t.x, t.y] for t in X] self.n_data = n_data self.k = k def init_centroid(self): idx = random.sample(range(self.n_data), self.k) centroids = [self.x[i] for i in idx] return centroids def compute_distance(self, centroids): distances = [] for x in self.x: dist = [math.sqrt(sum([(a - b) ** 2 for a, b in zip(x, centroid)])) for centroid in centroids] distances.append(dist) return distances def clustering(self): centroids = self.init_centroid() new_cluster = [0]*self.n_data cluster = [0]*self.n_data for epoch in range(100): distances = self.compute_distance(centroids) new_cluster = [min(range(len(d)), key=lambda i: d[i]) for d in distances] for idx_centroid in range(self.k): x_in_cluster = [self.x[i] for i in range(self.n_data) if new_cluster[i] == idx_centroid] if x_in_cluster: centroids[idx_centroid] = [int(sum(coord)/len(x_in_cluster)) for coord in zip(*x_in_cluster)] if new_cluster == cluster: break #cluster = new_cluster return centroids class Input: def __init__(self, N:int, M:int, ab:list) -> None: self.N = N self.M = M self.ab = ab class Parser: def __init__(self, input_type:int): self.flag = input_type def parse(self): if self.flag == -1: inp:Input = self.parse_input() else: inp:Input = self.parse_input_file(self.flag) return inp def parse_input(self) -> Input: N,M = map(int,input().split()) ab = [list(map(int,input().split())) for i in range(N)] return Input(N,M,ab) def parse_input_file(self,num) -> Input: cnt = str(num).zfill(4) PATH = f"./in/{cnt}.txt" with open(PATH) as f: l = [s.strip() for s in f.readlines()] N, M = map(int,l[0].split()) ab = [list(map(int,s.split())) for s in l[1:]] return Input(N, M, ab) class Transit: def __init__(self, id:int, x:int, y:int, type:int) -> None: """ id:int id of planet or station x:int x coordinate y:int y coordinate type:int 1 planet, 2 station """ self.id = id self.x = x self.y = y self.type = type self.key = self.type * 1000 + self.id def __lt__(self, other) -> bool: return self.key < other.key def __eq__(self, other) -> bool: return self.key == other.key def __str__(self) -> str: return f"({self.id},{self.x},{self.y},{self.type})" class State: def __init__(self, order:list, planets:list, stations:list, dist_mat:list) -> None: """ order:list visited order stations:list[(int,int)] coordinates of space station """ self.order = order self.planets = planets self.stations = stations self.links = self.prepare_edges() self.dist_mat = dist_mat def prepare_edges(self): """ edges:dictを返す edges[Transit_from_key:int] = [(dist, Transit_to), ...] """ edges = defaultdict(list) for planet_from in self.planets: for planet_to in self.planets: # planet to planet if planet_from == planet_to: continue edges[planet_from.key].append((self.cal_dist(planet_from, planet_to), planet_to)) for station_to in self.stations: # planet to station edges[planet_from.key].append((self.cal_dist(planet_from, station_to), station_to)) for station_from in self.stations: # station to station for planet_to in self.planets: edges[station_from.key].append((self.cal_dist(station_from, planet_to), planet_to)) for station_to in self.stations: if station_from == station_to: continue edges[station_from.key].append((self.cal_dist(station_from, station_to), station_to)) return edges def cal_dist(self, v1:Transit, v2:Transit) -> float: """ return distance between v1 and v2 weighted by coefficient """ x1,y1 = v1.x, v1.y x2,y2 = v2.x, v2.y coef = alpha if v1.type == 1 and v2.type == 1: coef = alpha2 # planet to planet elif v1.type == 2 and v2.type == 2: coef = 1 # station to station d = ((x1-x2)**2+(y1-y2)**2) * coef return d def cal_score(self): score = 0 for i in range(len(self.order)-1): score += self.cal_dist(self.order[i], self.order[i+1]) return int(pow(10,9)/(1000+score**0.5)) def trace(start:Transit, target:Transit, ancestors): # s:source, t:target # dijksttra法の経路復元 route = [target] now = target while True: pre = ancestors[now.key] route.append(pre) if pre == start: break now = pre route.reverse() return route def dijkstra(start:Transit, target:Transit, links): heap = [(*l,start) for l in links[start.key]] heapq.heapify(heap) visited = set([start.key]) ancestors = defaultdict(int) while heap: cost, to, ancestor = heapq.heappop(heap) if to.key in visited: continue visited.add(to.key) ancestors[to.key] = ancestor if to == target: return cost, trace(start,target,ancestors) for cost2, node2 in links[to.key]: if node2.key not in visited: heapq.heappush(heap, (cost+cost2, node2, to)) return INF, None def warshall_floyd(planets:list): n = len(planets) dist = [[INF]*n for _ in range(n)] for i in range(n): dist[i][i] = 0 for i in range(n): for j in range(i+1,n): d = (planets[i].x - planets[j].x) ** 2 + (planets[i].y - planets[j].y) ** 2 dist[i][j] = d dist[j][i] = d for k in range(n): for i in range(n): for j in range(n): dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]) return dist class Output: def __init__(self, state:State) -> None: self.order = state.order self.stations = state.stations def ans(self): for transition in self.stations: print(transition.x, transition.y) print(len(self.order)) for transition in self.order: print(transition.type, transition.id+1) class Solver: def __init__(self, state:State) -> None: self.state = state def solve(self): self.state.order.append(self.state.planets[0]) visited = [0]*len(self.state.planets) visited[0] = 1 now = self.state.planets[0] next = Transit(-1,-1,-1,-1) n_visited = set([0]) while len(n_visited) < len(self.state.planets): next_dist = [] for i in range(len(self.state.planets)): next_dist.append((self.state.dist_mat[now.id][i], i)) next_dist = sorted(next_dist, key=lambda x:x[0]) for i in range(len(self.state.planets)): if visited[next_dist[i][1]] == 1: continue next = self.state.planets[next_dist[i][1]] break _, route = dijkstra(now, next, self.state.links) for transition in route: self.state.order.append(transition) now = next visited[next.id] = 1 n_visited.add(next.id) _, route = dijkstra(now, self.state.planets[0], self.state.links) for transition in route: self.state.order.append(transition) return self.state def main(): timeKeeper2 = TimeKeeper(0.83) parser = Parser(-1) input = parser.parse() planets = [] for i in range(input.N): planets.append(Transit(id = i, x = input.ab[i][0], y = input.ab[i][1], type = 1)) dist_mat = warshall_floyd(planets) kmeans_center = Kmeans(planets, 100, 8).clustering() stations = [] for i in range(input.M): stations.append(Transit(id = i,x = kmeans_center[i][0],y = kmeans_center[i][1],type = 2)) state = State([], planets, stations, dist_mat) solver = Solver(state) best_ans = solver.solve() best_score = best_ans.cal_score() #eprint(timeKeeper2.time_msec(), best_score) tmp_stations = best_ans.stations while not timeKeeper2.isTimeOver(): order = [] stations = [] for i in range(input.M): x_new = 0 y_new = 0 while True: x_new = tmp_stations[i].x+random.randrange(-20,20) y_new = tmp_stations[i].y+random.randrange(-20,20) if x_new >= 0 and x_new <= 1000 and y_new >= 0 and y_new <= 1000: break stations.append(Transit(id = i,x = x_new, y = y_new, type = 2)) state = State(order,planets,stations, dist_mat) solver = Solver(state) ans = solver.solve() score = ans.cal_score() #eprint(timeKeeper2.time_msec(), score) if score > best_score: best_score = score best_ans = ans tmp_stations = stations eprint(best_score) output = Output(best_ans) output.ans() if __name__ == "__main__": main()