#![allow(non_snake_case, unused)] use std::io::*; use std::{collections::*, fmt::format}; use std::{cmp::*, vec}; use crate::input::{*, marker::*}; use self::i64::kmeans; // コピペで使える proconio もどき // cunitacさんからお借りしています // https://gist.github.com/cunitac/b00be62bf68c9fb6055d22eb77c17e14 pub mod input { use std::{ cell::RefCell, fmt::Debug, io::{stdin, BufRead, BufReader, Stdin}, str::{FromStr, SplitWhitespace}, }; thread_local!( pub static STDIN_SOURCE: RefCell = RefCell::new(Source { stdin: BufReader::new(stdin()), tokens: "".split_whitespace(), }); ); pub struct Source { stdin: BufReader, tokens: SplitWhitespace<'static>, } impl Source { pub fn next_token(&mut self) -> Option<&str> { self.tokens.next().or_else(|| { let mut input = String::new(); self.stdin.read_line(&mut input).unwrap(); self.tokens = Box::leak(input.into_boxed_str()).split_whitespace(); self.tokens.next() }) } } #[macro_export] macro_rules! read_value { (from $s:expr, [$t:tt; $n:expr]) => { (0..$n).map(|_| $crate::read_value!(from $s, $t)).collect::>() }; (from $s:expr, [$t:tt]) => { let n = $crate::read_value!(from $s, usize); $crate::read_value!(from $s, [$t; n]) }; (from $s:expr, $t:ty) => { <$t as $crate::input::Readable>::read(&mut $s) }; (from $s:expr, $($t:tt),* $(,)?) => { ($($crate::read_value!(from $s, $t)),*) }; ($($r:tt)*) => { $crate::input::STDIN_SOURCE.with(|s| { let mut s = s.borrow_mut(); $crate::read_value!(from s, $($r)*) }) } } #[macro_export] macro_rules! input { () => { }; ($x:tt: $t:tt, $($r:tt)*) => { let $x = $crate::read_value!($t); $crate::input!($($r)*); }; (mut $x:tt: $t:tt, $($r:tt)*) => { let mut $x = $crate::read_value!($t); $crate::input!($($r)*); }; (from $s:expr, $x:tt, $t:tt, $($r:tt)*) => { let $x = $crate::read_value!(from $s, $t); $crate::input!(from $s, $($r)*); }; (from $s:expr, mut $x:tt, $t:tt, $($r:tt)*) => { let mut $x = $crate::read_value!(from $s, $t); $crate::input!(from $s, $($r)*); }; ($($r:tt)*) => { $crate::input!($($r)*,); }; } pub trait Readable { type Output; fn read(source: &mut Source) -> Self::Output; } impl, E: Debug> Readable for T { type Output = T; fn read(source: &mut Source) -> T { source.next_token().unwrap().parse().unwrap() } } pub mod marker { macro_rules! impl_readable { ($e:ident, $t:ty, $u:ty, $f:expr) => { pub enum $e {} impl $crate::input::Readable for $e { type Output = $t; fn read(mut source: &mut $crate::input::Source) -> $t { $f($crate::read_value!(from source, $u)) } } }; } impl_readable!(Usize1, usize, usize, |x| x - 1); impl_readable!(Isize1, isize, isize, |x| x - 1); impl_readable!(Chars, Vec, String, |x: String| x.chars().collect()); impl_readable!(Bytes, Vec, String, |x: String| x.bytes().collect()); } } macro_rules! impl_kmeans { ($kind: ty, $modname: ident) => { // Since we can't overload methods in rust, we have to use namespacing pub mod $modname { use std::$modname::MAX; /// computes sum of squared deviation between two identically sized vectors /// `x`, and `y`. fn distance(x: &[$kind], y: &[$kind]) -> $kind { x.iter() .zip(y.iter()) .fold(0, |dist, (&xi, &yi)| dist + (xi - yi) * (xi - yi)) } /// Returns a vector containing the indices zi in {0, ..., K-1} of /// the centroid nearest to each datum. fn nearest_centroids(xs: &[Vec<$kind>], centroids: &[Vec<$kind>]) -> Vec { xs.iter() .map(|xi| { // Find the argmin by folding using a tuple containing the argmin // and the minimum distance. let (argmin, _) = centroids.iter().enumerate().fold( (0_usize, MAX), |(min_ix, min_dist), (ix, ci)| { let dist = distance(xi, ci); if dist < min_dist { (ix, dist) } else { (min_ix, min_dist) } }, ); argmin }) .collect() } /// Recompute the centroids given the current clustering fn recompute_centroids( xs: &[Vec<$kind>], clustering: &[usize], k: usize, ) -> Vec> { let ndims = xs[0].len(); // NOTE: Kind of inefficient because we sweep all the data from each of the // k centroids. (0..k) .map(|cluster_ix| { let mut centroid: Vec<$kind> = vec![0; ndims]; let mut n_cluster: $kind = 0; xs.iter().zip(clustering.iter()).for_each(|(xi, &zi)| { if zi == cluster_ix { n_cluster += 1; xi.iter().enumerate().for_each(|(j, &x_ij)| { centroid[j] += x_ij; }); } }); centroid.iter().map(|&c_j| c_j / n_cluster).collect() }) .collect() } /// Assign the N D-dimensional data, `xs`, to `k` clusters using K-Means clustering pub fn kmeans(xs: Vec>, k: usize) -> (Vec, Vec>) { assert!(xs.len() >= k); // Rather than pulling in a dependency to radomly select the staring // points for the centroids, we're going to deterministally choose them by // slecting evenly spaced points in `xs` let n_per_cluster: usize = xs.len() / k; let centroids: Vec> = (0..k).map(|j| xs[j * n_per_cluster].clone()).collect(); let mut clustering = nearest_centroids(&xs, ¢roids); loop { let centroids = recompute_centroids(&xs, &clustering, k); let new_clustering = nearest_centroids(&xs, ¢roids); // loop until the clustering doesn't change after the new centroids are computed if new_clustering .iter() .zip(clustering.iter()) .all(|(&za, &zb)| za == zb) { // We need to use `return` to break out of the `loop` return (clustering, centroids); } else { clustering = new_clustering; } } } } }; } impl_kmeans!(i64, i64); const N: usize = 100; const M: usize = 8; const ALPHA: i64 = 5; const INF: i64 = 1_000_000_000; const TL: f64 = 0.97; pub fn get_time() -> f64 { static mut STIME: f64 = -1.0; let t = std::time::SystemTime::now().duration_since(std::time::UNIX_EPOCH).unwrap(); let ms = t.as_secs() as f64 + t.subsec_nanos() as f64 * 1e-9; unsafe { if STIME < 0.0 { STIME = ms; } // ローカル環境とジャッジ環境の実行速度差はget_timeで吸収しておくと便利 #[cfg(feature = "local")] { (ms - STIME) * 1.5 } #[cfg(not(feature = "local"))] { (ms - STIME) } } } // 頂点の種類によって距離の二乗を返す pub fn squared_distance(xi: i64, y1: i64, i: usize, xj: i64, y2: i64, j: usize) -> i64 { if i < N && j < N { ((xi - xj) * (xi - xj) + (y1 - y2) * (y1 - y2)) * ALPHA * ALPHA } else if i < N || j < N { ((xi - xj) * (xi - xj) + (y1 - y2) * (y1 - y2)) * ALPHA } else { ((xi - xj) * (xi - xj) + (y1 - y2) * (y1 - y2)) } } #[derive(Clone)] pub struct Input { pos: Vec>, } impl Input { fn new() -> Self { input! { _n: usize, _m: usize, } let mut pos = vec![]; for _ in 0..N { input! { ai: i64, bi: i64, } pos.push(vec![ai, bi]); } Self { pos } } } // ワーシャルフロイドで全点対間最短経路を求める pub fn warshall_floyd(pos: &Vec>) -> Vec> { let mut dist = vec![vec![INF; N+M]; N+M]; // 自身への距離は0 for i in 0..N+M { dist[i][i] = 0; } // (i,j)間の距離を入れる for i in 0..N+M { for j in i+1..N+M { dist[i][j] = squared_distance(pos[i][0], pos[i][1], i, pos[j][0], pos[j][1], j); dist[j][i] = dist[i][j]; } } // ワーシャルフロイド法 for k in 0..N+M { for i in 0..N+M { for j in 0..N+M { // (i,j)間はkを経由したほうが短くなるか調べる if dist[i][j] > dist[i][k] + dist[k][j] { dist[i][j] = dist[i][k] + dist[k][j]; } } } } dist } // (i, j)間の最短パスをダイクストラで見つける pub fn dijkstra(pos: &Vec>, s: usize, t: usize) -> Vec<(usize, usize)> { // s->tパスをダイクストラで見つける let mut dist = vec![INF; N+M]; dist[s] = 0; let mut prev = vec![!0; N+M]; // 経路復元用 let mut bh = BinaryHeap::new(); bh.push((Reverse(0), s)); while let Some((Reverse(d), frm)) = bh.pop() { // 目的地についているなら,終了する if frm == t {break;} // 見ようとしているものより既にいい経路が見つかっていれば飛ばす if dist[frm] < d {continue;} for to in 0..N+M { let energy = squared_distance(pos[frm][0], pos[frm][1], frm, pos[to][0], pos[to][1], to); if d + energy < dist[to] { // コストを更新したほうがいいなら,更新しつつ優先度付きキューに入れる dist[to] = d + energy; prev[to] = frm; // 頂点 frm -> toにたどり着いた bh.push((Reverse(dist[to]), to)); } } } // 経路復元 let mut path = vec![]; let mut tt = t; while tt != !0 { // toがstartになるまでprev[to]を辿っていく if tt < N { // 惑星 path.push((1, tt)); } else { // ステーション path.push((2, tt - N)); } tt = prev[tt]; } path.reverse(); path } // 始点sから開始して,未訪問の惑星で一番近いものへのパスを経路復元つきダイクストラで求めていく pub fn init_path(pos: &Vec>, dist_warshall_floyd: &Vec>) -> Vec<(usize, usize)> { let mut path = vec![]; let mut s = 0; let mut visited = vec![false; N]; visited[s] = true; for i in 0..N { // sから未訪問の惑星のうち,一番近いものを見つける let mut min_dist = INF; let mut t = !0; if i < N - 1 { // 惑星1以外のN-1個の探索 for j in 0..N { if s == j || visited[j] {continue;} if dist_warshall_floyd[s][j] < min_dist { min_dist = dist_warshall_floyd[s][j]; t = j; } } } else { // 最後は惑星1に帰ってきたいので,visitedを無視してt=0にする t = 0; } // s->tパスをダイクストラで見つけ,全体に追加 let mut small_path = dijkstra(&pos, s, t); if i < N - 1 { // 最後に惑星1に帰ってくるまでは,終点は次の始点になり,次のsmall_pathの先頭に含まれるので捨てる small_path.pop(); } path.extend(small_path); // 次のイテレーションのための更新 s = t; visited[t] = true; } path } #[derive(Clone)] struct State { turn: i64, is_done: bool, game_score: i64, evaluated_score: i64, pos: Vec>, // 先頭N個に惑星の場所,続くM個にステーションの場所が格納されている path: Vec<(usize, usize)>, // 道順 (惑星orステーション,番号) } impl State { fn new(input: &Input) -> Self { // 各惑星をkmeansでクラスタリングする // どのクラスタに所属するかと,各クラスタのセントロイドを保持し,セントロイドは宇宙ステーションとする let (cluster, station) = kmeans(input.pos.clone(), M); let mut pos = input.pos.clone(); pos.extend(station); // 惑星と宇宙ステーションの位置をもとに,(i, j)間の距離をワーシャルフロイドで求めておく let dist_warshall_floyd = warshall_floyd(&pos); let path = init_path(&pos, &dist_warshall_floyd); Self { turn: 0, is_done: false, game_score: 0, evaluated_score: 0, pos, path, } } // 2-optを行う // pub fn two_opt(&mut self) { // // let v = self.route.len(); // } // 1-indexに直しつつ回答を出力 pub fn print(&self) { for i in 0..M { println!("{} {}", self.pos[i + N][0], self.pos[i + N][1]); } let v = self.path.len(); println!("{}", v); for i in 0..v { let (ti, ri) = self.path[i]; println!("{} {}", ti, ri + 1); } } } fn main() { // 2-optに見えるが,再訪ありなので単純には適応できない // ただ,宇宙ステーションに再訪してもいいが,惑星は再訪しないほうがよい // 近傍: // - 2-opt (ただし,最初と最後が惑星1なのは固定する) // - 少なくとも一方が宇宙ステーションであるパスの追加 // - いずれかの宇宙ステーションの座標をずらす (あるいは,これはあらかじめk-meansで求めておく) get_time(); let input = Input::new(); let mut state = State::new(&input); state.print(); eprintln!("score: {}", state.game_score); eprintln!("time: {}", get_time()); }