#![allow(non_snake_case)] #![allow(unused_imports)] #![allow(unused_macros)] #![allow(clippy::needless_range_loop)] #![allow(clippy::comparison_chain)] #![allow(clippy::nonminimal_bool)] #![allow(clippy::neg_multiply)] #![allow(dead_code)] use std::cmp::Reverse; use std::collections::{BTreeMap, BinaryHeap, VecDeque}; use std::ops; // const MOD: usize = 1e9 as usize + 7; const MOD: usize = 998244353; // const MOD: usize = 2147483647; fn read() -> T { let mut s = String::new(); std::io::stdin().read_line(&mut s).ok(); s.trim().parse().ok().unwrap() } fn read_vec() -> Vec { read::() .split_whitespace() .map(|e| e.parse().ok().unwrap()) .collect() } #[macro_export] macro_rules! max { ($x: expr) => ($x); ($x: expr, $( $y: expr ),+) => { std::cmp::max($x, max!($( $y ),+)) } } #[macro_export] macro_rules! min { ($x: expr) => ($x); ($x: expr, $( $y: expr ),+) => { std::cmp::min($x, min!($( $y ),+)) } } #[derive(Debug, Clone)] struct UnionFind { parent: Vec, size: usize, } impl UnionFind { fn new(n: usize) -> Self { UnionFind { parent: vec![-1; n], size: n, } } fn find(&mut self, x: usize) -> usize { if self.parent[x] < 0 { return x; } let root = self.find(self.parent[x] as usize); self.parent[x] = root as isize; root } fn unite(&mut self, x: usize, y: usize) -> Option<(usize, usize)> { let root_x = self.find(x); let root_y = self.find(y); if root_x == root_y { return None; } let size_x = -self.parent[root_x]; let size_y = -self.parent[root_y]; self.size -= 1; if size_x >= size_y { self.parent[root_x] -= size_y; self.parent[root_y] = root_x as isize; Some((root_x, root_y)) } else { self.parent[root_y] -= size_x; self.parent[root_x] = root_y as isize; Some((root_y, root_x)) } } fn is_same(&mut self, x: usize, y: usize) -> bool { self.find(x) == self.find(y) } fn is_root(&mut self, x: usize) -> bool { self.find(x) == x } fn get_union_size(&mut self, x: usize) -> usize { let root = self.find(x); -self.parent[root] as usize } fn get_size(&self) -> usize { self.size } fn roots(&self) -> Vec { (0..self.parent.len()) .filter(|i| self.parent[*i] < 0) .collect::>() } fn members(&mut self, x: usize) -> Vec { let root = self.find(x); (0..self.parent.len()) .filter(|i| self.find(*i) == root) .collect::>() } fn all_group_members(&mut self) -> BTreeMap> { let mut groups_map: BTreeMap> = BTreeMap::new(); for x in 0..self.parent.len() { let r = self.find(x); groups_map.entry(r).or_default().push(x); } groups_map } } #[derive(Debug, Clone)] struct WeightedUnionFind { parent: Vec, size: usize, diff_weight: Vec, } impl WeightedUnionFind { fn new(n: usize) -> Self { WeightedUnionFind { parent: vec![-1; n], size: n, diff_weight: vec![0_isize; n], } } fn find(&mut self, x: usize) -> usize { if self.parent[x] < 0 { return x; } let root = self.find(self.parent[x] as usize); self.diff_weight[x] += self.diff_weight[self.parent[x] as usize]; self.parent[x] = root as isize; root } fn weight(&mut self, x: usize) -> isize { self.find(x); self.diff_weight[x] } fn unite(&mut self, x: usize, y: usize, w: isize) -> Option<(usize, usize)> { let root_x = self.find(x); let root_y = self.find(y); if root_x == root_y { return None; } let adjusted_w = w + self.weight(x) - self.weight(y); let size_x = -self.parent[root_x]; let size_y = -self.parent[root_y]; self.size -= 1; if size_x >= size_y { self.diff_weight[root_y] = adjusted_w; self.parent[root_x] -= size_y; self.parent[root_y] = root_x as isize; Some((root_x, root_y)) } else { self.diff_weight[root_x] = -adjusted_w; self.parent[root_y] -= size_x; self.parent[root_x] = root_y as isize; Some((root_y, root_x)) } } fn is_same(&mut self, x: usize, y: usize) -> bool { self.find(x) == self.find(y) } fn is_root(&mut self, x: usize) -> bool { self.find(x) == x } fn diff(&mut self, x: usize, y: usize) -> isize { self.weight(y) - self.weight(x) } fn get_union_size(&mut self, x: usize) -> usize { let root = self.find(x); -self.parent[root] as usize } fn get_size(&self) -> usize { self.size } fn roots(&self) -> Vec { (0..self.parent.len()) .filter(|i| self.parent[*i] < 0) .collect::>() } fn members(&mut self, x: usize) -> Vec { let root = self.find(x); (0..self.parent.len()) .filter(|i| self.find(*i) == root) .collect::>() } fn all_group_members(&mut self) -> BTreeMap> { let mut groups_map: BTreeMap> = BTreeMap::new(); for x in 0..self.parent.len() { let r = self.find(x); groups_map.entry(r).or_default().push(x); } groups_map } } type M = ModInt; #[derive(Debug, Clone, Copy)] struct ModInt { value: usize, } impl ModInt { fn new(n: usize) -> Self { ModInt { value: n % MOD } } fn zero() -> Self { ModInt { value: 0 } } fn one() -> Self { ModInt { value: 1 } } fn value(&self) -> usize { self.value } fn pow(&self, n: usize) -> Self { let mut p = *self; let mut ret = ModInt::one(); let mut nn = n; while nn > 0 { if nn & 1 == 1 { ret *= p; } p *= p; nn >>= 1; } ret } fn inv(&self) -> Self { ModInt::new((ext_gcd(self.value, MOD).0 + MOD as isize) as usize) } } impl ops::Add for ModInt { type Output = ModInt; fn add(self, other: Self) -> Self { ModInt::new(self.value + other.value) } } impl ops::Sub for ModInt { type Output = ModInt; fn sub(self, other: Self) -> Self { ModInt::new(MOD + self.value - other.value) } } impl ops::Mul for ModInt { type Output = ModInt; fn mul(self, other: Self) -> Self { ModInt::new(self.value * other.value) } } #[allow(clippy::suspicious_arithmetic_impl)] impl ops::Div for ModInt { type Output = ModInt; fn div(self, other: Self) -> Self { self * other.inv() } } impl ops::AddAssign for ModInt { fn add_assign(&mut self, other: Self) { *self = *self + other; } } impl ops::SubAssign for ModInt { fn sub_assign(&mut self, other: Self) { *self = *self - other; } } impl ops::MulAssign for ModInt { fn mul_assign(&mut self, other: Self) { *self = *self * other; } } impl ops::DivAssign for ModInt { fn div_assign(&mut self, other: Self) { *self = *self / other; } } #[derive(Debug, Clone)] struct Comb { fact: Vec, fact_inverse: Vec, } impl Comb { fn new(n: usize) -> Self { let mut fact = vec![M::one(), M::one()]; let mut fact_inverse = vec![M::one(), M::one()]; let mut inverse = vec![M::zero(), M::one()]; for i in 2..=n { fact.push(*fact.last().unwrap() * M::new(i)); inverse.push((M::zero() - inverse[MOD % i]) * M::new(MOD / i)); fact_inverse.push(*fact_inverse.last().unwrap() * *inverse.last().unwrap()); } Comb { fact, fact_inverse } } fn nCr(&self, n: usize, r: usize) -> ModInt { self.fact[n] * self.fact_inverse[n - r] * self.fact_inverse[r] } fn nHr(&self, n: usize, r: usize) -> ModInt { self.nCr(n + r - 1, r) } } #[derive(Default)] struct Solver {} impl Solver { fn solve(&mut self) { let T: usize = read(); for _ in 0..T { let N: usize = read(); let S: String = read(); let mut S: Vec = S.chars().collect(); let mut cnt = 0_usize; let mut two_row = vec![]; let mut two_row_index = vec![]; let mut ok = true; for i in 0..2 * N { if cnt == 0 && i >= N { break; } let idx1 = i % N; let idx2 = (i + 1) % N; let a = S[idx1]; let b = S[idx2]; if a == b && (a == '0' || a == '1') { if cnt == 0 { two_row_index.push(idx1); two_row_index.push(idx2); } cnt += 1; } else { if cnt >= 2 { ok = false; break; } else if cnt == 1 { two_row.push(two_row_index.clone()); } cnt = 0; two_row_index = vec![]; } } for v in &two_row { let idx1 = v[0]; let idx1_before = (N + idx1 - 1) % N; let idx2 = v[1]; let idx2_after = (idx2 + 1) % N; if S[idx1_before] == S[idx1] { ok = false; } if S[idx1_before] == '?' { if S[idx1] == '0' { S[idx1_before] = '1'; } else { S[idx1_before] = '0'; } } if S[idx2_after] == S[idx2] { ok = false; } if S[idx2_after] == '?' { if S[idx2] == '0' { S[idx2_after] = '1'; } else { S[idx2_after] = '0'; } } } if ok { println!("Yes"); } else { println!("No"); } } } } fn main() { std::thread::Builder::new() .stack_size(128 * 1024 * 1024) .spawn(|| Solver::default().solve()) .unwrap() .join() .unwrap(); } fn eratosthenes(n: usize) -> Vec { let mut is_prime_list = vec![true; n + 1]; is_prime_list[0] = false; is_prime_list[1] = false; let mut i = 2; while i * i <= n { if is_prime_list[i] { let mut j = i * i; while j <= n { is_prime_list[j] = false; j += i; } } i += 1 } is_prime_list } fn legendre(n: usize, p: usize) -> usize { let mut cnt = 0_usize; let mut pp = p; while pp <= n { cnt += n / pp; pp *= p; } cnt } fn mod_pow(a: usize, b: usize) -> usize { let mut p = a; let mut ret = 1; let mut n = b; while n > 0 { if n & 1 == 1 { ret = ret * p % MOD; } p = p * p % MOD; n >>= 1; } ret } fn mod_pow2(a: usize, b: usize, m: usize) -> usize { let mut p = a; let mut ret = 1; let mut n = b; while n > 0 { if n & 1 == 1 { ret = ret * p % m; } p = p * p % m; n >>= 1; } ret } fn mod_inv(a: usize, b: usize) -> usize { (a * mod_pow(b, MOD - 2)) % MOD } fn prime_factorize(n: usize) -> BTreeMap { let mut nn = n; let mut i = 2; let mut pf: BTreeMap = BTreeMap::new(); while i * i <= n { while nn % i == 0 { *pf.entry(i).or_default() += 1; nn /= i; } i += 1; } if nn != 1 { *pf.entry(nn).or_default() += 1; } pf } fn enum_dividers(n: usize) -> Vec { let mut i = 1_usize; let mut ret = vec![]; while i * i <= n { if n % i == 0 { ret.push(i); if i != n / i { ret.push(n / i); } } i += 1; } ret.sort(); ret } // ax+by=gcd(a, b) fn ext_gcd(a: usize, b: usize) -> (isize, isize, usize) { if a == 0 { return (0, 1, b); } let (x, y, g) = ext_gcd(b % a, a); (y - b as isize / a as isize * x, x, g) } fn mod_inv2(x: usize) -> usize { (ext_gcd(x, MOD).0 + MOD as isize) as usize % MOD } fn coordinate_compression(v: Vec) -> BTreeMap { let mut vv = v; vv.sort(); vv.dedup(); let ret = vv.iter().enumerate().map(|(i, &s)| (s, i)).collect(); ret }