#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using Int = long long; template ostream &operator<<(ostream &os, const pair &a) { return os << "(" << a.first << ", " << a.second << ")"; }; template ostream &operator<<(ostream &os, const vector &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; } template void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; } template bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; } template bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; } // Minimum cost flow by successive shortest paths. // Assumes that there exists no negative-cost cycle. // TODO: Check the range of intermediate values. template struct MinCostFlow { // Watch out when using types other than int and long long. static constexpr Flow FLOW_EPS = 1e-10L; static constexpr Flow FLOW_INF = std::numeric_limits::max(); static constexpr Cost COST_EPS = 1e-10L; static constexpr Cost COST_INF = std::numeric_limits::max(); int n, m; vector ptr, nxt, zu; vector capa; vector cost; explicit MinCostFlow(int n_) : n(n_), m(0), ptr(n_, -1) {} void ae(int u, int v, Flow w, Cost c) { assert(0 <= u); assert(u < n); assert(0 <= v); assert(v < n); assert(0 <= w); nxt.push_back(ptr[u]); zu.push_back(v); capa.push_back(w); cost.push_back( c); ptr[u] = m++; nxt.push_back(ptr[v]); zu.push_back(u); capa.push_back(0); cost.push_back(-c); ptr[v] = m++; } vector pot, dist; vector vis; vector pari; // cost slopes[j] per flow when flows[j] <= flow <= flows[j + 1] vector flows; vector slopes; // Finds a shortest path from s to t in the residual graph. // O((n + m) log m) time. // Assumes that the members above are set. // The distance to a vertex might not be determined if it is >= dist[t]. // You can pass t = -1 to find a shortest path to each vertex. void shortest(int s, int t) { using Entry = pair; priority_queue, std::greater> que; for (int u = 0; u < n; ++u) { dist[u] = COST_INF; vis[u] = false; } for (que.emplace(dist[s] = 0, s); !que.empty(); ) { const Cost c = que.top().first; const int u = que.top().second; que.pop(); if (vis[u]) continue; vis[u] = true; if (u == t) return; for (int i = ptr[u]; ~i; i = nxt[i]) if (capa[i] > FLOW_EPS) { const int v = zu[i]; if (!vis[v]) { const Cost cc = c + cost[i] + pot[u] - pot[v]; if (dist[v] > cc) { que.emplace(dist[v] = cc, v); pari[v] = i; } } } } } // Finds a minimum cost flow from s to t of amount min{(max flow), limFlow}. // Bellman-Ford takes O(n m) time, or O(m) time if there is no negative-cost // edge, or cannot stop if there exists a negative-cost cycle. // min{(max flow), limFlow} shortest paths if Flow is an integral type. pair run(int s, int t, Flow limFlow = FLOW_INF) { assert(0 <= s); assert(s < n); assert(0 <= t); assert(t < n); assert(s != t); assert(0 <= limFlow); pot.assign(n, 0); for (; ; ) { bool upd = false; for (int i = 0; i < m; ++i) if (capa[i] > FLOW_EPS) { const int u = zu[i ^ 1], v = zu[i]; const Cost cc = pot[u] + cost[i]; if (pot[v] > cc + COST_EPS) { pot[v] = cc; upd = true; } } if (!upd) break; } dist.resize(n); vis.resize(n); pari.resize(n); Flow flow = 0; Cost cost = 0; flows.clear(); flows.push_back(0); slopes.clear(); for (; flow < limFlow; ) { shortest(s, t); if (!vis[t]) break; for (int u = 0; u < n; ++u) pot[u] += min(dist[u], dist[t]); Flow f = limFlow - flow; for (int v = t; v != s; ) { const int i = pari[v]; if (f > capa[i]) { f = capa[i]; } v = zu[i ^ 1]; } for (int v = t; v != s; ) { const int i = pari[v]; capa[i] -= f; capa[i ^ 1] += f; v = zu[i ^ 1]; } flow += f; cost += f * (pot[t] - pot[s]); flows.push_back(flow); slopes.push_back(pot[t] - pot[s]); } return make_pair(flow, cost); } }; //////////////////////////////////////////////////////////////////////////////// int N, M; vector A, B; int main() { for (; ~scanf("%d%d", &N, &M); ) { A.resize(M); B.resize(M); for (int i = 0; i < M; ++i) { scanf("%d%d", &A[i], &B[i]); --A[i]; --B[i]; } MinCostFlow mcf(2 + N + N + N + N); auto out = [&](int u) -> int { return 2 + u; }; auto in = [&](int u) -> int { return 2 + N + u; }; auto toL = [&](int u) -> int { return 2 + N + N + u; }; auto toR = [&](int u) -> int { return 2 + N + N + N + u; }; for (int u = 0; u < N; ++u) { mcf.ae(0, out(u), 1, 0); mcf.ae(in(u), 1, 1, 0); mcf.ae(toL(u), in(u), 1, 0); mcf.ae(toR(u), in(u), 1, 0); // discard if (u - 1 >= 0) mcf.ae(out(u), toL(u - 1), 1, 0); if (u + 1 < N) mcf.ae(out(u), toR(u + 1), 1, 0); } for (int u = 0; u < N - 1; ++u) { mcf.ae(toL(u + 1), toL(u), N, 0); mcf.ae(toR(u), toR(u + 1), N, 0); } // use for (int i = 0; i < M; ++i) { mcf.ae(out(A[i]), in(B[i]), 1, -1); mcf.ae(out(B[i]), in(A[i]), 1, -1); } const auto res = mcf.run(0, 1, N); // cerr<<"res = "<