#include using namespace std; using ll = long long; template struct mcf_graph { public: mcf_graph() {} mcf_graph(int n) : _n(n), g(n) {} int add_edge(int from, int to, Cap cap, Cost cost) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); int m = int(pos.size()); pos.push_back({from, int(g[from].size())}); g[from].push_back(_edge{to, int(g[to].size()), cap, cost}); g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost}); return m; } struct edge { int from, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(pos.size()); assert(0 <= i && i < m); auto _e = g[pos[i].first][pos[i].second]; auto _re = g[_e.to][_e.rev]; return edge{ pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost, }; } std::vector edges() { int m = int(pos.size()); std::vector result(m); for (int i = 0; i < m; i++) { result[i] = get_edge(i); } return result; } std::pair flow(int s, int t) { return flow(s, t, std::numeric_limits::max()); } std::pair flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); } std::vector> slope(int s, int t) { return slope(s, t, std::numeric_limits::max()); } std::vector> slope(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); std::vector dual(_n, 0), dist(_n); std::vector pv(_n), pe(_n); std::vector vis(_n); auto dual_ref = [&]() { std::fill(dist.begin(), dist.end(), std::numeric_limits::max()); std::fill(pv.begin(), pv.end(), -1); std::fill(pe.begin(), pe.end(), -1); std::fill(vis.begin(), vis.end(), false); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; std::priority_queue que; dist[s] = 0; que.push(Q{0, s}); while (!que.empty()) { int v = que.top().to; que.pop(); if (vis[v]) continue; vis[v] = true; if (v == t) break; for (int i = 0; i < int(g[v].size()); i++) { auto e = g[v][i]; if (vis[e.to] || !e.cap) continue; Cost cost = e.cost - dual[e.to] + dual[v]; if (dist[e.to] - dist[v] > cost) { dist[e.to] = dist[v] + cost; pv[e.to] = v; pe[e.to] = i; que.push(Q{dist[e.to], e.to}); } } } if (!vis[t]) { return false; } for (int v = 0; v < _n; v++) { if (!vis[v]) continue; dual[v] -= dist[t] - dist[v]; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost = -1; std::vector> result; result.push_back({flow, cost}); while (flow < flow_limit) { if (!dual_ref()) break; Cap c = flow_limit - flow; for (int v = t; v != s; v = pv[v]) { c = std::min(c, g[pv[v]][pe[v]].cap); } for (int v = t; v != s; v = pv[v]) { auto& e = g[pv[v]][pe[v]]; e.cap -= c; g[v][e.rev].cap += c; } Cost d = -dual[s]; flow += c; cost += c * d; if (prev_cost == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost = cost; } return result; } std::vector detail_slope(int s, int t){ std::vector> ori = slope(s, t); std::vector ans(ori.back().first + 1); Cap x = 0, nx; Cost y = 0, ny; for(int i = 1; i < ori.size(); i++){ std::tie(nx, ny) = ori[i]; Cost d = (ny - y) / (nx - x); while(x != nx){ ++x, y+= d; ans[x] = y; } } return ans; } private: int _n; struct _edge { int to, rev; Cap cap; Cost cost; }; std::vector> pos; std::vector> g; }; int main(){ ios::sync_with_stdio(false); cin.tie(0); int n, m, u, v; cin >> n >> m; ll INF = 1ll << 30; mcf_graph g(4 * n + 2); vector> A(n, vector(n)); int s = 4 * n, t = s + 1; for(int i = 0; i < m; i++){ cin >> u >> v; u--, v--; A[u][v] = A[v][u] = true; g.add_edge(v, u + 3 * n, 2, 0); g.add_edge(u, v + 3 * n, 2, 0); } for(int i = 0; i < n; i++){ g.add_edge(s, i, 2, 0); g.add_edge(i + n, i + 3 * n, 2, 0); g.add_edge(i + 2 * n, i + 3 * n, 2, 0); g.add_edge(i + 3 * n, t, 2, 0); if(i >= 1){ g.add_edge(i + n, i + n - 1, INF, 0); g.add_edge(i, i + n - 1, 2, INF); } if(i + 1 < n){ g.add_edge(i + 2 * n, i + 2 * n + 1, INF, 0); g.add_edge(i, i + 2 * n + 1, 2, INF); } } auto p = g.flow(s, t); //cerr << p.first << '\n'; cout << n - p.second / INF << '\n'; }