#include #include #include #include #include class xrand { uint64_t x; public: using result_type = uint32_t; static constexpr result_type min() { return std::numeric_limits::min(); } static constexpr result_type max() { return std::numeric_limits::max(); } xrand(uint64_t k) : x(k) {} xrand() : xrand(1) {} result_type operator()() { x ^= x << 9; x ^= x >> 7; return (x * 0x123456789abcdef) >> 32; } }; xrand rng; std::uniform_int_distribution<> dist4(0, 3), dist14(0, 13); constexpr std::array dx{1, 0, -1, 0}, dy{0, 1, 0, -1}; constexpr int N = 3000, T = 400; std::array A, B, C, D; std::array income; std::array cost; constexpr bool in_grid(unsigned x, unsigned y) { return x < 14 and y < 14; } constexpr int id(unsigned x, unsigned y) { return 14 * x + y; } constexpr int id4(unsigned x, unsigned y, unsigned z, unsigned w) { return 2744 * x + 196 * y + 14 * z + w; } int main() { int n, t; std::cin >> n >> t; for (int i = 0; i < N; i++) { std::cin >> A.at(i) >> B.at(i) >> C.at(i) >> D.at(i); A.at(i)--; B.at(i)--; C.at(i)--; D.at(i)--; } for (int i = 0; i <= 26; i++) { for (int j = 0; j <= 26000 / 223; j++) { int dist = 1000 * i + 223 * j; if (dist > 26000) break; income.at(dist) = 60 * j; } } for (int x = 0; x < 14; x++) { for (int y = 0; y < 14; y++) { for (int z = 0; z < 14; z++) { for (int w = 0; w < 14; w++) { cost.at(id4(x, y, z, w)) = 1000 * (abs(x - z) + abs(y - w)); } } } } int64_t income_turn = 0, income_next = 0; int x, y, z, w; auto road_next = [&]() { for (int i = 0; i < 14; i++) { for (int j = 0; j < 14; j++) { for (int dir = 0; dir < 2; dir++) { int k = i + dx[dir], l = j + dy[dir]; if (not in_grid(k, l)) continue; if (cost.at(id4(i, j, k, l)) != 1000) continue; int count = 0; for (int person = 0; person < N; person++) { int a = A.at(person), b = B.at(person), c = C.at(person), d = D.at(person); int distance = cost.at(id4(a, b, c, d)); distance = std::min( distance, cost.at(id4(a, b, i, j) + 223 + id4(k, l, c, d))); distance = std::min( distance, cost.at(id4(a, b, k, l) + 223 + id4(i, j, c, d))); count += income.at(distance); } if (count > income_next) { income_next = count; x = i; y = j; z = k; w = l; } } } } }; road_next(); int64_t money = 1000000, collaborator = 1; for (int turn = 0; turn < T; turn++) { int64_t u, v; std::cin >> u >> v; assert(u == money); assert(v == collaborator); if (u == -1 and v == -1) { return 0; } int64_t d = 10000000 / sqrt(collaborator); assert(d * d * collaborator <= 100000000000000); assert((d + 1) * (d + 1) * collaborator > 100000000000000); int action = 1; if (turn < 99) { action = 2; } else if (money < d) { action = 3; } if (action == 1) { std::cout << action << ' ' << x + 1 << ' ' << y + 1 << ' ' << z + 1 << ' ' << w + 1 << std::endl; } else { std::cout << action << std::endl; } if (action == 1) { money -= d; if (money < 0) { money = -1; collaborator = -1; continue; } int k = id(x, y), l = id(z, w); for (int i = 0; i < 196; i++) { for (int j = 0; j < 196; j++) { cost.at(196 * i + j) = std::min( cost.at(196 * i + j), cost.at(196 * i + k) + 223 + cost.at(196 * l + j)); cost.at(196 * i + j) = std::min( cost.at(196 * i + j), cost.at(196 * i + l) + 223 + cost.at(196 * k + j)); } } income_turn = income_next; road_next(); } else if (action == 2) { collaborator++; } else { money += 50000; } money += income_turn; } return 0; }