#頂点は1-index,下段は0-index class LazySegTree: #単位元と結合と作用をここで定義 Xunit = 0 Aunit = 0 def Xf(self,x,y): return max(x,y) #Xf = max def Af(self,a,b): return (a + b) % P #AのXへの作用 def operate(self,x,a): return (x + a) % P def __init__(self,N): self.N = N self.X = [self.Xunit] * (N + N) self.A = [self.Aunit] * (N + N) def build(self,seq): for i,x in enumerate(seq,self.N): self.X[i] = x for i in range(self.N-1,0,-1): self.X[i] = self.Xf(self.X[i<<1],self.X[i<<1 | 1]) def eval_at(self,i): return self.operate(self.X[i],self.A[i]) def propagate_at(self,i): self.X[i] = self.eval_at(i) self.A[i<<1] = self.Af(self.A[i<<1],self.A[i]) self.A[i<<1 | 1] = self.Af(self.A[i<<1 | 1],self.A[i]) self.A[i] = self.Aunit def propagate_above(self,i): H = i.bit_length() - 1 for h in range(H,0,-1): self.propagate_at(i >> h) def recalc_above(self,i): while i > 1: i >>= 1 self.X[i] = self.Xf(self.eval_at(i << 1),self.eval_at(i << 1 | 1)) def update(self,i,x): i += self.N self.propagate_above(i) self.X[i] = x self.A[i] = self.Aunit self.recalc_above(i) def fold(self,L = 0,R = -1): if R == -1:R = self.N L += self.N R += self.N self.propagate_above(L // (L & -L)) self.propagate_above(R // (R & -R) -1) vL = self.Xunit vR = self.Xunit while L < R: if L & 1: vL = self.Xf(vL,self.eval_at(L)) L += 1 if R & 1: R -= 1 vR = self.Xf(self.eval_at(R),vR) L >>= 1 R >>= 1 return self.Xf(vL,vR) def operate_range(self,L,R,x): #区間全体に作用させる L += self.N R += self.N L0 = L // (L & -L) R0 = R // (R & -R) - 1 self.propagate_above(L0) self.propagate_above(R0) while L < R: if L & 1: self.A[L] = self.Af(self.A[L],x) L += 1 if R & 1: R -= 1 self.A[R] = self.Af(self.A[R],x) L >>= 1 R >>= 1 self.recalc_above(L0) self.recalc_above(R0) def write(self): print(self.X) def change(self,Xf,Xunit,Af,Aunit,operate): self.Xf = Xf self.Xunit = Xunit self.Af = Af self.Aunit = Aunit self.operate = operate N = int(input()) S = input() P = 998244353 ans = 0 for i in range(1,N + 1): seg = LazySegTree(N + 2) seg.build([1] + [0] * N) for j in range(N): now = seg.fold(j,j + 1) #print(now) end = 0 if i + j > N: end = N + 2 else: if S[-(i+j)] == "0": end = N + 2 else: end = i + j seg.operate_range(j + 1,end,now) last = seg.fold(N + 1,N + 2) #print(last) ans += pow(2,(i-1),P) * (pow(2,N - 1,P) - last) % P print(ans % P)