#line 1 "/home/maspy/compro/library/my_template.hpp" #if defined(LOCAL) #include #else #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #include using namespace std; using ll = long long; using u32 = unsigned int; using u64 = unsigned long long; using i128 = __int128; template constexpr T infty = 0; template <> constexpr int infty = 1'000'000'000; template <> constexpr ll infty = ll(infty) * infty * 2; template <> constexpr u32 infty = infty; template <> constexpr u64 infty = infty; template <> constexpr i128 infty = i128(infty) * infty; template <> constexpr double infty = infty; template <> constexpr long double infty = infty; using pi = pair; using vi = vector; template using vc = vector; template using vvc = vector>; template using vvvc = vector>; template using vvvvc = vector>; template using vvvvvc = vector>; template using pq = priority_queue; template using pqg = priority_queue, greater>; #define vv(type, name, h, ...) \ vector> name(h, vector(__VA_ARGS__)) #define vvv(type, name, h, w, ...) \ vector>> name( \ h, vector>(w, vector(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector>>> name( \ a, vector>>( \ b, vector>(c, vector(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) \ for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s))) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template T ceil(T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); } template T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); } template pair divmod(T x, U y) { T q = floor(x, y); return {q, x - q * y}; } template T SUM(const vector &A) { T sum = 0; for (auto &&a: A) sum += a; return sum; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) \ sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template T POP(deque &que) { T a = que.front(); que.pop_front(); return a; } template T POP(pq &que) { T a = que.top(); que.pop(); return a; } template T POP(pqg &que) { assert(!que.empty()); T a = que.top(); que.pop(); return a; } template T POP(vc &que) { assert(!que.empty()); T a = que.back(); que.pop_back(); return a; } template ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x)); } return ok; } template double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x)); } return (ok + ng) / 2; } template inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc s_to_vi(const string &S, char first_char) { vc A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template vector cumsum(vector &A, int off = 1) { int N = A.size(); vector B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template vector argsort(const vector &A) { vector ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template vc rearrange(const vc &A, const vc &I) { vc B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } #endif #line 1 "/home/maspy/compro/library/other/io.hpp" // based on yosupo's fastio #include namespace fastio { #define FASTIO // クラスが read(), print() を持っているかを判定するメタ関数 struct has_write_impl { template static auto check(T &&x) -> decltype(x.write(), std::true_type{}); template static auto check(...) -> std::false_type; }; template class has_write : public decltype(has_write_impl::check(std::declval())) { }; struct has_read_impl { template static auto check(T &&x) -> decltype(x.read(), std::true_type{}); template static auto check(...) -> std::false_type; }; template class has_read : public decltype(has_read_impl::check(std::declval())) {}; struct Scanner { FILE *fp; char line[(1 << 15) + 1]; size_t st = 0, ed = 0; void reread() { memmove(line, line + st, ed - st); ed -= st; st = 0; ed += fread(line + ed, 1, (1 << 15) - ed, fp); line[ed] = '\0'; } bool succ() { while (true) { if (st == ed) { reread(); if (st == ed) return false; } while (st != ed && isspace(line[st])) st++; if (st != ed) break; } if (ed - st <= 50) { bool sep = false; for (size_t i = st; i < ed; i++) { if (isspace(line[i])) { sep = true; break; } } if (!sep) reread(); } return true; } template ::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; while (true) { size_t sz = 0; while (st + sz < ed && !isspace(line[st + sz])) sz++; ref.append(line + st, sz); st += sz; if (!sz || st != ed) break; reread(); } return true; } template ::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; bool neg = false; if (line[st] == '-') { neg = true; st++; } ref = T(0); while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); } if (neg) ref = -ref; return true; } template ::value>::type * = nullptr> inline bool read_single(T &x) { x.read(); return true; } bool read_single(double &ref) { string s; if (!read_single(s)) return false; ref = std::stod(s); return true; } bool read_single(char &ref) { string s; if (!read_single(s) || s.size() != 1) return false; ref = s[0]; return true; } template bool read_single(vector &ref) { for (auto &d: ref) { if (!read_single(d)) return false; } return true; } template bool read_single(pair &p) { return (read_single(p.first) && read_single(p.second)); } template void read_single_tuple(T &t) { if constexpr (N < std::tuple_size::value) { auto &x = std::get(t); read_single(x); read_single_tuple(t); } } template bool read_single(tuple &tpl) { read_single_tuple(tpl); return true; } void read() {} template void read(H &h, T &... t) { bool f = read_single(h); assert(f); read(t...); } Scanner(FILE *fp) : fp(fp) {} }; struct Printer { Printer(FILE *_fp) : fp(_fp) {} ~Printer() { flush(); } static constexpr size_t SIZE = 1 << 15; FILE *fp; char line[SIZE], small[50]; size_t pos = 0; void flush() { fwrite(line, 1, pos, fp); pos = 0; } void write(const char val) { if (pos == SIZE) flush(); line[pos++] = val; } template ::value, int> = 0> void write(T val) { if (pos > (1 << 15) - 50) flush(); if (val == 0) { write('0'); return; } if (val < 0) { write('-'); val = -val; // todo min } size_t len = 0; while (val) { small[len++] = char(0x30 | (val % 10)); val /= 10; } for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; } pos += len; } void write(const string s) { for (char c: s) write(c); } void write(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) write(s[i]); } void write(const double x) { ostringstream oss; oss << fixed << setprecision(15) << x; string s = oss.str(); write(s); } void write(const long double x) { ostringstream oss; oss << fixed << setprecision(15) << x; string s = oss.str(); write(s); } template ::value>::type * = nullptr> inline void write(T x) { x.write(); } template void write(const vector val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } template void write(const pair val) { write(val.first); write(' '); write(val.second); } template void write_tuple(const T t) { if constexpr (N < std::tuple_size::value) { if constexpr (N > 0) { write(' '); } const auto x = std::get(t); write(x); write_tuple(t); } } template bool write(tuple tpl) { write_tuple(tpl); return true; } template void write(const array val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } void write(i128 val) { string s; bool negative = 0; if (val < 0) { negative = 1; val = -val; } while (val) { s += '0' + int(val % 10); val /= 10; } if (negative) s += "-"; reverse(all(s)); if (len(s) == 0) s = "0"; write(s); } }; Scanner scanner = Scanner(stdin); Printer printer = Printer(stdout); void flush() { printer.flush(); } void print() { printer.write('\n'); } template void print(Head &&head, Tail &&... tail) { printer.write(head); if (sizeof...(Tail)) printer.write(' '); print(forward(tail)...); } void read() {} template void read(Head &head, Tail &... tail) { scanner.read(head); read(tail...); } } // namespace fastio using fastio::print; using fastio::flush; using fastio::read; #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector name(size); \ read(name) #define VV(type, name, h, w) \ vector> name(h, vector(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } #line 2 "/home/maspy/compro/library/ds/segtree/dynamic_lazy_segtree.hpp" template struct Dynamic_Lazy_SegTree { using AM = ActedMonoid; using MX = typename AM::Monoid_X; using MA = typename AM::Monoid_A; using X = typename AM::X; using A = typename AM::A; using F = function; F default_prod; struct Node { Node *l, *r; X x; A lazy; }; const ll L0, R0; Node *pool; int pid; using np = Node *; Dynamic_Lazy_SegTree( ll L0, ll R0, F default_prod = [](ll l, ll r) -> X { return MX::unit(); }) : default_prod(default_prod), L0(L0), R0(R0), pid(0) { pool = new Node[NODES]; } np new_root() { return new_node(L0, R0); } np new_node(const X x) { pool[pid].l = pool[pid].r = nullptr; pool[pid].x = x; pool[pid].lazy = MA::unit(); return &(pool[pid++]); } np new_node(ll l, ll r) { return new_node(default_prod(l, r)); } np new_node() { return new_node(L0, R0); } np new_node(const vc &dat) { assert(L0 == 0 && R0 == len(dat)); auto dfs = [&](auto &dfs, ll l, ll r) -> Node * { if (l == r) return nullptr; if (r == l + 1) return new_node(dat[l]); ll m = (l + r) / 2; np l_root = dfs(dfs, l, m), r_root = dfs(dfs, m, r); X x = MX::op(l_root->x, r_root->x); np root = new_node(x); root->l = l_root, root->r = r_root; return root; }; return dfs(dfs, 0, len(dat)); } X prod(np root, ll l, ll r) { assert(pid && L0 <= l && l < r && r <= R0); X x = MX::unit(); prod_rec(root, L0, R0, l, r, x, MA::unit()); return x; } X prod_all(np root) { return prod(root, L0, R0); } np set(np root, ll i, const X &x) { assert(pid && L0 <= i && i < R0); return set_rec(root, L0, R0, i, x); } np multiply(np root, ll i, const X &x) { assert(pid && L0 <= i && i < R0); return multiply_rec(root, L0, R0, i, x); } np apply(np root, ll l, ll r, const A &a) { if (l == r) return root; assert(pid && L0 <= l && l < r && r <= R0); return apply_rec(root, L0, R0, l, r, a); } template ll max_right(np root, F check, ll L) { assert(pid && L0 <= L && L <= R0 && check(MX::unit())); X x = MX::unit(); return max_right_rec(root, check, L0, R0, L, x); } template ll min_left(np root, F check, ll R) { assert(pid && L0 <= R && R <= R0 && check(MX::unit())); X x = MX::unit(); return min_left_rec(root, check, L0, R0, R, x); } // f(idx, val) template void enumerate(np root, F f) { auto dfs = [&](auto &dfs, np c, ll l, ll r, A a) -> void { if (!c) return; if (r - l == 1) { f(l, AM::act(c->x, a, 1)); return; } ll m = (l + r) / 2; a = MA::op(c->lazy, a); dfs(dfs, c->l, l, m, a); dfs(dfs, c->r, m, r, a); }; dfs(dfs, root, L0, R0, MA::unit()); } void reset() { pid = 0; } private: np copy_node(np c) { if (!c || !PERSISTENT) return c; pool[pid].l = c->l, pool[pid].r = c->r; pool[pid].x = c->x; pool[pid].lazy = c->lazy; return &(pool[pid++]); } void prop(np c, ll l, ll r) { assert(r - l >= 2); ll m = (l + r) / 2; if (c->lazy == MA::unit()) return; c->l = (c->l ? copy_node(c->l) : new_node(l, m)); c->l->x = AM::act(c->l->x, c->lazy, m - l); c->l->lazy = MA::op(c->l->lazy, c->lazy); c->r = (c->r ? copy_node(c->r) : new_node(m, r)); c->r->x = AM::act(c->r->x, c->lazy, r - m); c->r->lazy = MA::op(c->r->lazy, c->lazy); c->lazy = MA::unit(); } np set_rec(np c, ll l, ll r, ll i, const X &x) { if (r == l + 1) { c = copy_node(c); c->x = x; c->lazy = MA::unit(); return c; } prop(c, l, r); ll m = (l + r) / 2; if (!c->l) c->l = new_node(l, m); if (!c->r) c->r = new_node(m, r); c = copy_node(c); if (i < m) { c->l = set_rec(c->l, l, m, i, x); } else { c->r = set_rec(c->r, m, r, i, x); } c->x = MX::op(c->l->x, c->r->x); return c; } np multiply_rec(np c, ll l, ll r, ll i, const X &x) { if (r == l + 1) { c = copy_node(c); c->x = MX::op(c->x, x); c->lazy = MA::unit(); return c; } prop(c, l, r); ll m = (l + r) / 2; if (!c->l) c->l = new_node(l, m); if (!c->r) c->r = new_node(m, r); c = copy_node(c); if (i < m) { c->l = multiply_rec(c->l, l, m, i, x); } else { c->r = multiply_rec(c->r, m, r, i, x); } c->x = MX::op(c->l->x, c->r->x); return c; } void prod_rec(np c, ll l, ll r, ll ql, ll qr, X &x, A lazy) { chmax(ql, l); chmin(qr, r); if (ql >= qr) return; if (!c) { x = MX::op(x, AM::act(default_prod(ql, qr), lazy, qr - ql)); return; } if (l == ql && r == qr) { x = MX::op(x, AM::act(c->x, lazy, r - l)); return; } ll m = (l + r) / 2; lazy = MA::op(c->lazy, lazy); prod_rec(c->l, l, m, ql, qr, x, lazy); prod_rec(c->r, m, r, ql, qr, x, lazy); } np apply_rec(np c, ll l, ll r, ll ql, ll qr, const A &a) { if (!c) c = new_node(l, r); chmax(ql, l); chmin(qr, r); if (ql >= qr) return c; if (l == ql && r == qr) { c = copy_node(c); c->x = AM::act(c->x, a, r - l); c->lazy = MA::op(c->lazy, a); return c; } prop(c, l, r); ll m = (l + r) / 2; c = copy_node(c); c->l = apply_rec(c->l, l, m, ql, qr, a); c->r = apply_rec(c->r, m, r, ql, qr, a); c->x = MX::op(c->l->x, c->r->x); return c; } template ll max_right_rec(np c, const F &check, ll l, ll r, ll ql, X &x) { if (r <= ql) return r; if (!c) c = new_node(l, r); chmax(ql, l); if (l == ql && check(MX::op(x, c->x))) { x = MX::op(x, c->x); return r; } if (r == l + 1) return l; prop(c, l, r); ll m = (l + r) / 2; ll k = max_right_rec(c->l, check, l, m, ql, x); if (k < m) return k; return max_right_rec(c->r, check, m, r, ql, x); } template ll min_left_rec(np c, const F &check, ll l, ll r, ll qr, X &x) { if (qr <= l) return l; if (!c) c = new_node(l, r); chmin(qr, r); if (r == qr && check(MX::op(c->x, x))) { x = MX::op(c->x, x); return l; } if (r == l + 1) return r; prop(c, l, r); ll m = (l + r) / 2; ll k = min_left_rec(c->r, check, m, r, qr, x); if (m < k) return k; return min_left_rec(c->l, check, l, m, qr, x); } }; #line 2 "/home/maspy/compro/library/alg/monoid/add.hpp" template struct Monoid_Add { using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return x + y; } static constexpr X inverse(const X &x) noexcept { return -x; } static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; } static constexpr X unit() { return X(0); } static constexpr bool commute = true; }; #line 2 "/home/maspy/compro/library/alg/monoid/assign.hpp" template struct Monoid_Assign { using value_type = X; static X op(X x, X y) { return (y == none_val ? x : y); } static constexpr X unit() { return none_val; } static constexpr bool commute = false; }; #line 3 "/home/maspy/compro/library/alg/acted_monoid/sum_assign.hpp" template struct ActedMonoid_Sum_Assign { using Monoid_X = Monoid_Add; using Monoid_A = Monoid_Assign; using X = typename Monoid_X::value_type; using A = typename Monoid_A::value_type; static constexpr X act(const X &x, const A &a, const ll &size) { if (a == Monoid_A::unit()) return x; return a * E(size); } }; #line 5 "main.cpp" void solve() { /* x と x+1 が接続:dat[x] = 0 */ LL(N, Q); using AM = ActedMonoid_Sum_Assign; Dynamic_Lazy_SegTree seg( 0, N + 10, [&](ll l, ll r) -> int { return r - l; }); auto root = seg.new_root(); FOR(Q) { LL(t); if (t == 1) { LL(L, R); if (L == R) continue; root = seg.apply(root, L, R, 0); } if (t == 2) { LL(L, R); if (L == R) continue; root = seg.apply(root, L, R, 1); } if (t == 3) { LL(L, R); if (L > R) swap(L, R); ll x = (L == R ? 0 : seg.prod(root, L, R)); if (x == 0) print(1); else print(0); } if (t == 4) { LL(v); ll r = seg.max_right( root, [&](auto e) -> bool { return e == 0; }, v); ll l = seg.min_left( root, [&](auto e) -> bool { return e == 0; }, v); print(r - l + 1); } } } signed main() { int T = 1; // INT(T); FOR(T) solve(); return 0; }