from sys import stdin input=lambda :stdin.readline()[:-1] import math from bisect import bisect_left, bisect_right from typing import Generic, Iterable, Iterator, TypeVar, Union, List T = TypeVar('T') class SortedSet(Generic[T]): BUCKET_RATIO = 50 REBUILD_RATIO = 170 def _build(self, a=None) -> None: "Evenly divide `a` into buckets." if a is None: a = list(self) size = self.size = len(a) bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO))) self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)] def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)" a = list(a) if not all(a[i] < a[i + 1] for i in range(len(a) - 1)): a = sorted(set(a)) self._build(a) def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedSet" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _find_bucket(self, x: T) -> List[T]: "Find the bucket which should contain x. self must not be empty." for a in self.a: if x <= a[-1]: return a return a def __contains__(self, x: T) -> bool: if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) return i != len(a) and a[i] == x def add(self, x: T) -> bool: "Add an element and return True if added. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return True a = self._find_bucket(x) i = bisect_left(a, x) if i != len(a) and a[i] == x: return False a.insert(i, x) self.size += 1 if len(a) > len(self.a) * self.REBUILD_RATIO: self._build() return True def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) if i == len(a) or a[i] != x: return False a.pop(i) self.size -= 1 if len(a) == 0: self._build() return True def lt(self, x: T) -> Union[T, None]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Union[T, None]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Union[T, None]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Union[T, None]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, x: int) -> T: "Return the x-th element, or IndexError if it doesn't exist." if x < 0: x += self.size if x < 0: raise IndexError for a in self.a: if x < len(a): return a[x] x -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans from collections import defaultdict class UnionFind(): def __init__(self,n): self.n=n self.parents=[-1]*n def find(self,x): if self.parents[x]<0: return x else: self.parents[x]=self.find(self.parents[x]) return self.parents[x] def union(self,x,y): x=self.find(x) y=self.find(y) if x==y: return if self.parents[x]>self.parents[y]: x,y=y,x self.parents[x]+=self.parents[y] self.parents[y]=x def size(self,x): return -self.parents[self.find(x)] def same(self,x,y): return self.find(x)==self.find(y) def members(self,x): root=self.find(x) return [i for i in range(self.n) if self.find(i)==root] def roots(self): return [i for i, x in enumerate(self.parents) if x< 0] def group_count(self): return len(self.roots()) def all_group_members(self): group_members=defaultdict(list) for member in range(self.n): group_members[self.find(member)].append(member) return group_members def solve(n,q,queries): inf=1<<30 ANS=[] S=SortedSet() for qi in range(q): query=queries[qi] if query[0]==1: l,r=query[1:] L,R=l,r x=S.le([l,inf]) if x!=None and x[0]<=l and r<=x[1]: continue if x!=None and l<=x[1]<=r: L=min(L,x[0]) y=S.le([r,-inf]) if y!=None and l<=y[0]<=r: R=max(R,y[1]) while True: x=S.ge([L,L]) if x!=None and L<=x[0]<=R: R=max(R,x[1]) S.discard(x) else: break S.add([L,R]) elif query[0]==2: l,r=query[1:] x=S.le([l-1,inf]) if x!=None and x[1]>=l+1: S.discard(x) S.add([x[0],l]) if x[1]>=r: S.add([r,x[1]]) y=S.le([r,inf]) if y!=None and y[1]>=r: S.discard(y) S.add([r,y[1]]) if y[0]<=l: S.add([y[0],l]) while True: x=S.ge([l,l]) if x!=None and l<=x[0]<=x[1]<=r: S.discard(x) else: break elif query[0]==3: u,v=query[1:] u,v=min(u,v),max(u,v) if u==v: ANS.append(1) continue x=S.le([u,inf]) if x!=None and x[0]<=u<=v<=x[1]: ANS.append(1) else: ANS.append(0) elif query[0]==4: u=query[1] x=S.le([u,inf]) if x!=None and x[0]<=u<=x[1]: ANS.append(x[1]-x[0]+1) else: ANS.append(1) return ANS def naive(n,q,queries): uf=UnionFind(n+1) ANS=[] for qi in range(q): query=queries[qi] if query[0]==1: l,r=query[1:] for i in range(l,r+1): uf.union(l,i) if query[0]==2: l,r=query[1:] uf2=UnionFind(n+1) for i in range(1,l+1): for j in range(1,l+1): if uf.same(i,j): uf2.union(i,j) for i in range(r,n+1): for j in range(r,n+1): if uf.same(i,j): uf2.union(i,j) uf=uf2 if query[0]==3: u,v=query[1:] if uf.same(u,v): ANS.append(1) else: ANS.append(0) if query[0]==4: u=query[1] cnt=0 for i in range(n+1): if uf.same(i,u): cnt+=1 ANS.append(cnt) return ANS import random while False: n=random.randint(2,10) q=random.randint(2,10) queries=[] print(n,q) for _ in range(q): t=random.randint(1,4) if t==1: l=random.randint(1,n-1) r=random.randint(l+1,n) queries.append([1,l,r]) if t==2: l=random.randint(1,n-1) r=random.randint(l+1,n) queries.append([2,l,r]) if t==3: u=random.randint(1,n) v=random.randint(1,n) queries.append([3,u,v]) if t==4: u=random.randint(1,n) queries.append([4,u]) if solve(n,q,queries)!=naive(n,q,queries): print(n,q,queries) print(solve(n,q,queries)) print(naive(n,q,queries)) exit() n,q=map(int,input().split()) queries=[] for _ in range(q): query=list(map(int,input().split())) queries.append(query) print(*solve(n,q,queries),sep='\n') #print(naive(n,q,queries))