#pragma region Macros // #pragma GCC target("avx,avx2,fma") // #pragma GCC optimize("O3,unroll-loops") #include // #include // using namespace atcoder; using namespace std; using namespace __gnu_pbds; // #include // #include // namespace mp = boost::multiprecision; // using Bint = mp::cpp_int; // using Bdouble = mp::number>; #define TO_STRING(var) # var #define pb emplace_back #define int ll #define endl '\n' #define sqrt __builtin_sqrt using ll = long long; using ld = long double; const ld PI = acos(-1); const ld EPS = 1e-10; const int INF = 1 << 30; const ll INFL = 1LL << 61; const int MOD = 998244353; // const int MOD = 1000000007; __attribute__((constructor)) void constructor() { ios::sync_with_stdio(false); cin.tie(nullptr); // ifstream in("input.txt"); // cin.rdbuf(in.rdbuf()); cout << fixed << setprecision(12); } // class UnionFind { // public: // UnionFind() = default; // UnionFind(int N) : par(N), sz(N, 1) { // iota(par.begin(), par.end(), 0); // } // int root(int x) { // if (par[x] == x) return x; // return (par[x] = root(par[x])); // } // bool unite(int x, int y) { // int rx = root(x); // int ry = root(y); // if (rx == ry) return false; // if (sz[rx] < sz[ry]) swap(rx, ry); // sz[rx] += sz[ry]; // par[ry] = rx; // return true; // } // bool issame(int x, int y) { return (root(x) == root(y)); } // int size(int x) { return sz[root(x)]; } // vector> groups(int N) { // vector> G(N); // for (int x = 0; x < N; x++) { // G[root(x)].push_back(x); // } // G.erase( // remove_if(G.begin(), G.end(), // [&](const vector& V) { return V.empty(); }), // G.end()); // return G; // } // private: // vector par; // vector sz; // }; template class Modint{ public: int val = 0; Modint(int x = 0) { while (x < 0) x += mod; val = x % mod; } Modint(const Modint &r) { val = r.val; } Modint operator -() { return Modint(-val); } Modint operator +(const Modint &r) { return Modint(*this) += r; } Modint operator +(const int &q) { Modint r(q); return Modint(*this) += r; } Modint operator -(const Modint &r) { return Modint(*this) -= r; } Modint operator -(const int &q) { Modint r(q); return Modint(*this) -= r; } Modint operator *(const Modint &r) { return Modint(*this) *= r; } Modint operator *(const int &q) { Modint r(q); return Modint(*this) *= r; } Modint operator /(const Modint &r) { return Modint(*this) /= r; } Modint operator /(const int &q) { Modint r(q); return Modint(*this) /= r; } Modint& operator ++() { val = (val + 1) % mod; return *this; } Modint& operator --() { val = (val - 1 + mod) % mod; return *this; } Modint &operator +=(const Modint &r) { val += r.val; if (val >= mod) val -= mod; return *this; } Modint &operator +=(const int &q) { Modint r(q); val += r.val; if (val >= mod) val -= mod; return *this; } Modint &operator -=(const Modint &r) { if (val < r.val) val += mod; val -= r.val; return *this; } Modint &operator -=(const int &q) { Modint r(q); if (val < r.val) val += mod; val -= r.val; return *this; } Modint &operator *=(const Modint &r) { val = val * r.val % mod; return *this; } Modint &operator *=(const int &q) { Modint r(q); val = val * r.val % mod; return *this; } Modint &operator /=(const Modint &r) { int a = r.val, b = mod, u = 1, v = 0; while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);} val = val * u % mod; if (val < 0) val += mod; return *this; } Modint &operator /=(const int &q) { Modint r(q); int a = r.val, b = mod, u = 1, v = 0; while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);} val = val * u % mod; if (val < 0) val += mod; return *this; } bool operator ==(const Modint& r) { return this -> val == r.val; } bool operator <(const Modint& r) { return this -> val < r.val; } bool operator !=(const Modint& r) { return this -> val != r.val; } }; using mint = Modint; // using mint = modint; istream &operator >>(istream &is, mint& x) { int t; is >> t; x = t; return (is); } ostream &operator <<(ostream &os, const mint& x) { return os << x.val; } mint modpow(const mint &x, int n) { if (n == 0) return 1; mint t = modpow(x, n / 2); t = t * t; if (n & 1) t = t * x; return t; } int modpow(__int128_t x, int n, int mod) { __int128_t ret = 1; while (n > 0) { if (n % 2 == 1) ret = ret * x % mod; x = x * x % mod; n /= 2; } return ret; } int POW(int x, int n) { __int128_t ret = 1; if (n < 0) { cout << "error" << endl; return 0; } else if (x == 1 or n == 0) ret = 1; else if (x == -1 && n % 2 == 0) ret = 1; else if (x == -1) ret = -1; else if (n % 2 == 0) ret = POW(x * x, n / 2); else ret = x * POW(x, n - 1); if (ret > 8e18) ret = 0; // llに収まらない範囲は0埋め return ret; } int floor(int x, int y) { return (x > 0 ? x / y : (x - y + 1) / y); } int ceil(int x, int y) { return (x > 0 ? (x + y - 1) / y : x / y); } int per(int x, int y) { if (y == 0) { cout << "error" << endl; return INFL; } if (x >= 0 && y > 0) return x / y; if (x >= 0 && y < 0) return x / y - (x % y < 0); if (x < 0 && y < 0) return x / y + (x % y < 0); // if (x < 0 && y > 0) return x / y - (x % y < 0); } int mod(int x, int y) { if (y == 0) { cout << "error" << endl; return INFL; } if (x >= 0 && y > 0) return x % y; if (x >= 0 && y < 0) return x % y; if (x < 0 && y < 0) { __int128_t ret = x % y; ret += (__int128_t)abs(y) * INFL; ret %= abs(y); return ret; } // if (x < 0 && y > 0) { __int128_t ret = x % y; ret += (__int128_t)abs(y) * INFL; ret %= abs(y); return ret; // } } template bool chmax(T &a, const T& b) { if (a < b) { a = b; return true; } return false; } template bool chmin(T &a, const T& b) { if (a > b) { a = b; return true; } return false; } int countl_zero(int N) { return __builtin_clzll(N); } int countl_one(int N) { int ret = 0; while (N % 2) { N /= 2; ret++; } return ret; } int countr_zero(int N) { return __builtin_ctzll(N); } int countr_one(int N) { int ret = 0, k = 63 - __builtin_clzll(N); while (k != -1 && (N & (1LL << k))) { k--; ret++; } return ret; } int popcount(int N) { return __builtin_popcountll(N); } int unpopcount(int N) { return 64 - __builtin_clzll(N) - __builtin_popcountll(N); } int top_bit(int N) { return 63 - __builtin_clzll(N);} // 2^kの位 int bot_bit(int N) { return __builtin_ctz(N);} // 2^kの位 int MSB(int N) { return 1 << (63 - __builtin_clzll(N)); } // mask int LSB(int N) { return (N & -N); } // mask int bit_width(int N) { return 64 - __builtin_clzll(N); } // 桁数 int ceil_log2(int N) { return 63 - __builtin_clzll(N); } int bit_floor(int N) { return 1 << (63 - __builtin_clzll(N)); } int floor_log2(int N) { return 64 - __builtin_clzll(N-1); } int bit_ceil(int N) { return 1 << (64 - __builtin_clzll(N-1)) - (N==1); } vector fac, finv, Inv; void COMinit(int N) { fac.resize(N + 1); finv.resize(N + 1); Inv.resize(N + 1); fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; Inv[1] = 1; for (int i = 2; i <= N; i++) { fac[i] = fac[i-1] * mint(i); Inv[i] = -Inv[MOD % i] * mint(MOD / i); finv[i] = finv[i - 1] * Inv[i]; } } mint COM(int N, int K) { if (N < K) return 0; if (N < 0 || K < 0) return 0; return fac[N] * finv[K] * finv[N - K]; } struct Edge { int from, to; int cost; Edge(int to, int cost) : from(-1), to(to), cost(cost) {} Edge(int from, int to, int cost) : from(from), to(to), cost(cost) {} Edge &operator=(const int &x) { to = x; return *this; } operator int() const { return to; } }; #pragma endregion class UnionFind { public: UnionFind() = default; UnionFind(int N) : par(N), sz(N, 1), min_node(N), max_node(N) { for (int i = 0; i < N; i++) { par[i] = i; max_node[i] = i; min_node[i] = i; } } UnionFind(int N, const vector& V) : par(N), sz(N, 1), min_node(N), max_node(N), sum(N), min_value(N), max_value(N) { for (int i = 0; i < N; i++) { par[i] = i; max_node[i] = i; min_node[i] = i; sum[i] = V[i]; max_value[i] = V[i]; min_value[i] = V[i]; } } int root(int x) { if (par[x] == x) return x; return (par[x] = root(par[x])); } bool unite(int x, int y) { int rx = root(x); int ry = root(y); if (rx == ry) return false; if (sz[rx] < sz[ry]) swap(rx, ry); sz[rx] += sz[ry]; par[ry] = rx; min_node[rx] = min(min_node[rx], min_node[ry]); max_node[rx] = max(max_node[rx], max_node[ry]); // sum[rx] += sum[ry]; // min_value[rx] = min(min_value[rx], min_value[ry]); // max_value[rx] = max(max_value[rx], max_value[ry]); return true; } bool issame(int x, int y) { return (root(x) == root(y)); } int size(int x) { return sz[root(x)]; } int get_sum(int x) { return sum[root(x)]; } // xが属す集合に含まれる要素の、indexの最大/最小値 int get_max_node(int x) { return max_node[root(x)]; } int get_min_node(int x) { return min_node[root(x)]; } // xが属す集合に含まれる要素の、値の最大/最小値 int get_max_value(int x) { return max_value[root(x)]; } int get_min_value(int x) { return min_value[root(x)]; } vector> groups(int N) { vector> G(N); for (int x = 0; x < N; x++) { G[root(x)].push_back(x); } G.erase( remove_if(G.begin(), G.end(), [&](const vector& v) { return v.empty(); }), G.end()); return G; } private: vector par; vector sz; // sz[v]はvが親の時のみ正しい値を返す vector sum; vector max_node; vector min_node; vector max_value; vector min_value; }; signed main() { int W, H; cin >> W >> H; vector> G(W); // indexを頂点としたグラフ UnionFind uf(W); // issameな頂点間には辺を張らない // int K = W; // 連結成分数 vector P(W, -1); // パスワード bool flag = false; //以降全てゼロフラグ for (int i = 0; i < H; i++) { string S; cin >> S; vector> B(26); // 各英小文字のインデックス vector> C(26); // 英小文字iの確定値 for (int j = 0; j < W; j++) { if (S[j] >= 'a' && S[j] <= 'z') { B[(int)(S[j] - 'a')].pb(j); if (P[j] != -1) C[(int)(S[j] - 'a')].pb(P[j]); } } for (int j = 0; j < 26; j++) { if (B[j].size() == 0) continue; sort(C[j].begin(), C[j].end()); C[j].erase(unique(C[j].begin(), C[j].end()), C[j].end()); if (C[j].size() >= 2) flag = false; int sz = B[j].size(); for (int k = 0; k + 1 < sz; k++) { if (!uf.issame(B[j][k], B[j][k + 1])) { G[B[j][k]].pb(B[j][k + 1]); G[B[j][k + 1]].pb(B[j][k]); uf.unite(B[j][k], B[j][k + 1]); // K--; } if (C[j].size()) P[B[j][k]] = C[j][0]; } if (C[j].size()) P[B[j][sz - 1]] = C[j][0]; if (C[j].size() == 0) continue; int s = B[j][0]; // 始点。確定値があるなら同連結成分内を確定値valueで更新。 int value = C[j][0]; if (P[s] == -1) P[s] = value; else if (P[s] != value) { flag = true; break; } unordered_map visited; visited[s] = true; queue qu; qu.push(s); while (!qu.empty()) { int v = qu.front(); qu.pop(); for (auto nv : G[v]) { if (visited[nv]) continue; visited[nv] = true; if (P[nv] == -1) P[nv] = value; else if (P[nv] != value) { flag = true; break; } qu.push(nv); } if (flag) break; } } for (int j = 0; j < W; j++) { if (P[j] != -1 && S[j] >= '0' && S[j] <= '9' && P[j] != (int)(S[j] - '0')) { flag = true; } else if (P[j] == -1 && S[j] >= '0' && S[j] <= '9') { int s = j; // 始点。同連結成分内を確定値valueで更新。 int value = (int)(S[j] - '0'); // if (uf.size(s) == 1) K--; if (P[s] == -1) P[s] = value; else if (P[s] != value) { flag = true; break; } unordered_map visited; visited[s] = true; queue qu; qu.push(s); while (!qu.empty()) { int v = qu.front(); qu.pop(); for (auto nv : G[v]) { if (visited[nv]) continue; visited[nv] = true; if (P[nv] == -1) P[nv] = value; else if (P[nv] != value) { flag = true; break; } qu.push(nv); } if (flag) break; } } } if (flag) { cout << 0 << endl; continue; } unordered_set st3; for (int j = 0; j < W; j++) { if (P[j] == -1) { st3.insert(uf.root(j)); } } int K = st3.size(); // 連結成分数 mint ans = modpow(10, K); // 10^連結成分数 cout << ans << endl; } }