import sys from collections import deque, Counter input = lambda: sys.stdin.readline().rstrip() ii = lambda: int(input()) mi = lambda: map(int, input().split()) li = lambda: list(mi()) inf = 2 ** 63 - 1 mod = 998244353 from collections import deque class MaxFlow(): def __init__(self, n): self.n = n self.graph = [[] for _ in range(n)] self.pos = [] def add_edge(self, fr, to, cap): #assert 0 <= fr < self.n #assert 0 <= to < self.n #assert 0 <= cap m = len(self.pos) self.pos.append((fr, len(self.graph[fr]))) self.graph[fr].append([to, len(self.graph[to]), cap]) self.graph[to].append([fr, len(self.graph[fr]) - 1, 0]) return m def get_edge(self, idx): #assert 0 <= idx < len(self.pos) to, rev, cap = self.graph[self.pos[idx][0]][self.pos[idx][1]] rev_to, rev_rev, rev_cap = self.graph[to][rev] return rev_to, to, cap + rev_cap, rev_cap def edges(self): m = len(self.pos) for i in range(m): yield self.get_edge(i) def change_edge(self, idx, new_cap, new_flow): #assert 0 <= idx < len(self.pos) #assert 0 <= new_flow <= new_cap to, rev, cap = self.graph[self.pos[idx][0]][self.pos[idx][1]] self.graph[self.pos[idx][0]][self.pos[idx][1]][2] = new_cap - new_flow self.graph[to][rev][2] = new_flow def dfs(self, s, v, up): if v == s: return up res = 0 lv = self.level[v] for i in range(self.iter[v], len(self.graph[v])): to, rev, cap = self.graph[v][i] if lv <= self.level[to] or self.graph[to][rev][2] == 0: continue d = self.dfs(s, to, min(up - res, self.graph[to][rev][2])) if d <= 0: continue self.graph[v][i][2] += d self.graph[to][rev][2] -= d res += d if res == up: break self.iter[v] += 1 return res def dfs(self, s, t, up): stack = [t] while stack: v = stack[-1] if v == s: stack.pop() flow = up for v in stack: to, rev, cap = self.graph[v][self.iter[v]] flow = min(flow, self.graph[to][rev][2]) for v in stack: self.graph[v][self.iter[v]][2] += flow to, rev, cap = self.graph[v][self.iter[v]] self.graph[to][rev][2] -= flow return flow lv = self.level[v] while self.iter[v] < len(self.graph[v]): to, rev, cap = self.graph[v][self.iter[v]] if lv <= self.level[to] or self.graph[to][rev][2] == 0: self.iter[v] += 1 continue stack.append(to) break if self.iter[v] == len(self.graph[v]): stack.pop() self.level[v] = self.n return 0 def max_flow(self, s, t): return self.max_flow_with_limit(s, t, 2**63 - 1) def max_flow_with_limit(self, s, t, limit): #assert 0 <= s < self.n #assert 0 <= t < self.n flow = 0 while flow < limit: self.level = [-1] * self.n self.level[s] = 0 queue = deque() queue.append(s) while queue: v = queue.popleft() for to, rev, cap in self.graph[v]: if cap == 0 or self.level[to] >= 0: continue self.level[to] = self.level[v] + 1 if to == t: break queue.append(to) if self.level[t] == -1: break self.iter = [0] * self.n while flow < limit: f = self.dfs(s, t, limit - flow) if not f: break flow += f return flow def min_cut(self, s): visited = [0] * self.n queue = deque() queue.append(s) while queue: p = queue.popleft() visited[p] = True for to, rev, cap in self.graph[p]: if cap and not visited[to]: visited[to] = True queue.append(to) return visited n = ii() G = MaxFlow(n + n + 2) S = 2 * n T = 2 * n + 1 e = [] for i in range(n): G.add_edge(S, i, 1) G.add_edge(n + i, T, 1) for i in range(n): u, v = mi() e.append(u - 1) G.add_edge(u - 1, n + i, 1) G.add_edge(v - 1, n + i, 1) f = G.max_flow(S, T) ans = [None] * n for X in G.edges(): if n <= X[1] < 2 * n and X[3] == 1: x = X[1] - n if e[x] == X[0]: ans[x] = '->' else: ans[x] = '<-' for v in ans: print(v)