#include using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 998244353; // constexpr int MOD = 1000000007; constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1}; constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}; constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1}; template inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; } template inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; struct PartiallyPersistentUnionFind { explicit PartiallyPersistentUnionFind(const int n) : data(n, -1), last(n, -1), history(n, {{-1, -1}}) {} int root(const int t, const int ver) const { return last[ver] == -1 || t < last[ver] ? ver : root(t, data[ver]); } bool unite(const int t, int u, int v) { u = root(t, u); v = root(t, v); if (u == v) return false; if (data[u] > data[v]) std::swap(u, v); data[u] += data[v]; data[v] = u; last[v] = t; history[u].emplace_back(t, data[u]); return true; } bool is_same(const int t, const int u, const int v) const { return root(t, u) == root(t, v); } int size(const int t, int ver) const { ver = root(t, ver); return -std::prev(std::lower_bound(history[ver].begin(), history[ver].end(), std::make_pair(t, 0)))->second; } private: std::vector data, last; std::vector>> history; }; template struct Edge { CostType cost; int src, dst; explicit Edge(const int src, const int dst, const CostType cost = 0) : cost(cost), src(src), dst(dst) {} auto operator<=>(const Edge& x) const = default; }; template struct MInt { unsigned int v; MInt() : v(0) {} MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {} static constexpr int get_mod() { return M; } static void set_mod(const int divisor) { assert(divisor == M); } static void init(const int x) { inv(x); fact(x); fact_inv(x); } template static MInt inv(const int n) { // assert(0 <= n && n < M && std::gcd(n, M) == 1); static std::vector inverse{0, 1}; const int prev = inverse.size(); if (n < prev) return inverse[n]; if constexpr (MEMOIZES) { // "n!" and "M" must be disjoint. inverse.resize(n + 1); for (int i = prev; i <= n; ++i) { inverse[i] = -inverse[M % i] * (M / i); } return inverse[n]; } int u = 1, v = 0; for (unsigned int a = n, b = M; b;) { const unsigned int q = a / b; std::swap(a -= q * b, b); std::swap(u -= q * v, v); } return u; } static MInt fact(const int n) { static std::vector factorial{1}; const int prev = factorial.size(); if (n >= prev) { factorial.resize(n + 1); for (int i = prev; i <= n; ++i) { factorial[i] = factorial[i - 1] * i; } } return factorial[n]; } static MInt fact_inv(const int n) { static std::vector f_inv{1}; const int prev = f_inv.size(); if (n >= prev) { f_inv.resize(n + 1); f_inv[n] = inv(fact(n).v); for (int i = n; i > prev; --i) { f_inv[i - 1] = f_inv[i] * i; } } return f_inv[n]; } static MInt nCk(const int n, const int k) { if (n < 0 || n < k || k < 0) return 0; return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) : fact_inv(n - k) * fact_inv(k)); } static MInt nPk(const int n, const int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); } static MInt nHk(const int n, const int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); } static MInt large_nCk(long long n, const int k) { if (n < 0 || n < k || k < 0) return 0; inv(k); MInt res = 1; for (int i = 1; i <= k; ++i) { res *= inv(i) * n--; } return res; } MInt pow(long long exponent) const { MInt res = 1, tmp = *this; for (; exponent > 0; exponent >>= 1) { if (exponent & 1) res *= tmp; tmp *= tmp; } return res; } MInt& operator+=(const MInt& x) { if (std::cmp_greater_equal(v += x.v, M)) v -= M; return *this; } MInt& operator-=(const MInt& x) { if (std::cmp_greater_equal(v += M - x.v, M)) v -= M; return *this; } MInt& operator*=(const MInt& x) { v = static_cast(v) * x.v % M; return *this; } MInt& operator/=(const MInt& x) { return *this *= inv(x.v); } auto operator<=>(const MInt& x) const = default; MInt& operator++() { if (std::cmp_equal(++v, M)) v = 0; return *this; } MInt operator++(int) { const MInt res = *this; ++*this; return res; } MInt& operator--() { v = (v == 0 ? M - 1 : v - 1); return *this; } MInt operator--(int) { const MInt res = *this; --*this; return res; } MInt operator+() const { return *this; } MInt operator-() const { return MInt(v ? M - v : 0); } MInt operator+(const MInt& x) const { return MInt(*this) += x; } MInt operator-(const MInt& x) const { return MInt(*this) -= x; } MInt operator*(const MInt& x) const { return MInt(*this) *= x; } MInt operator/(const MInt& x) const { return MInt(*this) /= x; } friend std::ostream& operator<<(std::ostream& os, const MInt& x) { return os << x.v; } friend std::istream& operator>>(std::istream& is, MInt& x) { long long v; is >> v; x = MInt(v); return is; } }; using ModInt = MInt; int main() { int n, x, q; cin >> n >> x >> q; vector w(q, -1); vector q3(n, 0); PartiallyPersistentUnionFind union_find(n); REP(tm, q) { int type; cin >> type; if (type == 1) { int v; cin >> v >> w[tm]; if (union_find.is_same(tm, v, x)) continue; const int rv = union_find.root(tm, v), rx = union_find.root(tm, x); q3[rv] += ModInt(union_find.size(tm, rv)) * union_find.size(tm, rx) * w[tm]; union_find.unite(tm, rv, rx); const int r = union_find.root(tm, v), other = r ^ rv ^ rx; q3[r] += q3[other]; q3[other] = 0; } else if (type == 2) { int u, v; cin >> u >> v; if (u == v) { cout << 0 << '\n'; continue; } if (!union_find.is_same(tm, u, v)) { cout << "-1\n"; continue; } int lb = -1, ub = tm - 1; while (ub - lb > 1) { const int t = midpoint(lb, ub); (union_find.is_same(t, u, v) ? ub : lb) = t; } cout << w[ub] << '\n'; x += w[ub]; } else if (type == 3) { int v; cin >> v; cout << q3[union_find.root(tm, v)] << '\n'; } else if (type == 4) { int value; cin >> value; x += value; } x %= n; } return 0; }