#ifndef CLASS_MODINT #define CLASS_MODINT #include template class modint { private: std::uint32_t n; public: modint() : n(0) {}; modint(std::int64_t n_) : n((n_ >= 0 ? n_ : mod - (-n_) % mod) % mod) {}; static constexpr std::uint32_t get_mod() { return mod; } std::uint32_t get() const { return n; } bool operator==(const modint& m) const { return n == m.n; } bool operator!=(const modint& m) const { return n != m.n; } modint& operator+=(const modint& m) { n += m.n; n = (n < mod ? n : n - mod); return *this; } modint& operator-=(const modint& m) { n += mod - m.n; n = (n < mod ? n : n - mod); return *this; } modint& operator*=(const modint& m) { n = std::uint64_t(n) * m.n % mod; return *this; } modint operator+(const modint& m) const { return modint(*this) += m; } modint operator-(const modint& m) const { return modint(*this) -= m; } modint operator*(const modint& m) const { return modint(*this) *= m; } modint inv() const { return (*this).pow(mod - 2); } modint pow(std::uint64_t b) const { modint ans = 1, m = modint(*this); while (b) { if (b & 1) ans *= m; m *= m; b >>= 1; } return ans; } }; #endif // CLASS_MODINT #include #include #include using namespace std; using mint = modint<998244353>; class edge { public: int to; mint weight; edge() : to(-1), weight(mint()) {} edge(int to_, const mint& weight_) : to(to_), weight(weight_) {} }; int main() { // step #1. read input (without queries) & make graph int N; cin >> N; N += 1; vector P(N, -1); for (int i = 1; i < N; i++) { cin >> P[i]; } vector > G(N); for (int i = 1; i < N; i++) { int x; cin >> x; G[P[i]].push_back(edge(i, mint(x))); } auto solve = [&](int K, int mark) { // step #2. compute values used in dynamic programming vector depth(N); depth[0] = 0; vector prob(N); prob[0] = 1; vector flag(N, false); flag[mark] = true; for (int i = 0; i < N; i++) { if (!G[i].empty()) { mint allmul = 0; for (edge e : G[i]) { allmul += e.weight; } allmul = prob[i] * allmul.inv(); for (edge e : G[i]) { depth[e.to] = depth[i] + 1; prob[e.to] = e.weight * allmul; if (flag[i]) { flag[e.to] = true; } } } } vector v1(N + 1), v2(N + 1); for (int i = 0; i < N; i++) { if (G[i].empty()) { v1[depth[i] + 1] += prob[i]; if (flag[i]) { v2[depth[i] + 1] += prob[i]; } } } // step #3. dynamic programming vector dp1(K + 1), dp2(K + 1); dp1[0] = 1; dp2[0] = 0; for (int i = 1; i <= K; i++) { for (int j = 1; j <= N && j <= i; j++) { dp1[i] += dp1[i - j] * v1[j]; dp2[i] += dp2[i - j] * v1[j] + dp1[i - j] * v2[j]; } } // step #4. calculate answer mint answer = 0, s1 = 0, s2 = 0; for (int i = N - 1; i >= 0; i--) { s1 += v1[i + 1]; s2 += v2[i + 1]; if (K >= i) { answer += dp2[K - i] * s1 + (i >= depth[mark] ? dp1[K - i] * s2 : mint(0)); } } if (mark == 0) { answer -= 1; } return answer; }; // step #6. process queries int Q; cin >> Q; for (int i = 0; i < Q; i++) { int a, k; cin >> a >> k; mint answer = solve(k, a); cout << answer.get() << endl; } return 0; }