#include #ifdef _MSC_VER # include #else # include #endif #include #include namespace suisen { // ! utility template using constraints_t = std::enable_if_t, std::nullptr_t>; template constexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) { if constexpr (cond_v) { return std::forward(then); } else { return std::forward(or_else); } } // ! function template using is_same_as_invoke_result = std::is_same, ReturnType>; template using is_uni_op = is_same_as_invoke_result; template using is_bin_op = is_same_as_invoke_result; template using is_comparator = std::is_same, bool>; // ! integral template >> constexpr int bit_num = std::numeric_limits>::digits; template struct is_nbit { static constexpr bool value = bit_num == n; }; template static constexpr bool is_nbit_v = is_nbit::value; // ? template struct safely_multipliable {}; template <> struct safely_multipliable { using type = long long; }; template <> struct safely_multipliable { using type = __int128_t; }; template <> struct safely_multipliable { using type = unsigned long long; }; template <> struct safely_multipliable { using type = __uint128_t; }; template <> struct safely_multipliable { using type = __uint128_t; }; template <> struct safely_multipliable { using type = float; }; template <> struct safely_multipliable { using type = double; }; template <> struct safely_multipliable { using type = long double; }; template using safely_multipliable_t = typename safely_multipliable::type; template struct rec_value_type { using type = T; }; template struct rec_value_type> { using type = typename rec_value_type::type; }; template using rec_value_type_t = typename rec_value_type::type; } // namespace suisen // ! type aliases using i128 = __int128_t; using u128 = __uint128_t; template using pq_greater = std::priority_queue, std::greater>; // ! macros (internal) #define DETAIL_OVERLOAD2(_1,_2,name,...) name #define DETAIL_OVERLOAD3(_1,_2,_3,name,...) name #define DETAIL_OVERLOAD4(_1,_2,_3,_4,name,...) name #define DETAIL_REP4(i,l,r,s) for(std::remove_reference_t>i=(l);i<(r);i+=(s)) #define DETAIL_REP3(i,l,r) DETAIL_REP4(i,l,r,1) #define DETAIL_REP2(i,n) DETAIL_REP3(i,0,n) #define DETAIL_REPINF3(i,l,s) for(std::remove_reference_t>i=(l);;i+=(s)) #define DETAIL_REPINF2(i,l) DETAIL_REPINF3(i,l,1) #define DETAIL_REPINF1(i) DETAIL_REPINF2(i,0) #define DETAIL_RREP4(i,l,r,s) for(std::remove_reference_t>i=(l)+fld((r)-(l)-1,s)*(s);i>=(l);i-=(s)) #define DETAIL_RREP3(i,l,r) DETAIL_RREP4(i,l,r,1) #define DETAIL_RREP2(i,n) DETAIL_RREP3(i,0,n) #define DETAIL_CAT_I(a, b) a##b #define DETAIL_CAT(a, b) DETAIL_CAT_I(a, b) #define DETAIL_UNIQVAR(tag) DETAIL_CAT(tag, __LINE__) // ! macros #define REP(...) DETAIL_OVERLOAD4(__VA_ARGS__, DETAIL_REP4 , DETAIL_REP3 , DETAIL_REP2 )(__VA_ARGS__) #define RREP(...) DETAIL_OVERLOAD4(__VA_ARGS__, DETAIL_RREP4 , DETAIL_RREP3 , DETAIL_RREP2 )(__VA_ARGS__) #define REPINF(...) DETAIL_OVERLOAD3(__VA_ARGS__, DETAIL_REPINF3, DETAIL_REPINF2, DETAIL_REPINF1)(__VA_ARGS__) #define LOOP(n) for (std::remove_reference_t> DETAIL_UNIQVAR(loop_variable) = n; DETAIL_UNIQVAR(loop_variable) --> 0;) #define ALL(iterable) std::begin(iterable), std::end(iterable) #define INPUT(type, ...) type __VA_ARGS__; read(__VA_ARGS__) // ! debug #ifdef LOCAL # define debug(...) debug_internal(#__VA_ARGS__, __VA_ARGS__) template void debug_internal(const char* s, T&& first, Args&&... args) { constexpr const char* prefix = "[\033[32mDEBUG\033[m] "; constexpr const char* open_brakets = sizeof...(args) == 0 ? "" : "("; constexpr const char* close_brakets = sizeof...(args) == 0 ? "" : ")"; std::cerr << prefix << open_brakets << s << close_brakets << ": " << open_brakets << std::forward(first); ((std::cerr << ", " << std::forward(args)), ...); std::cerr << close_brakets << "\n"; } #else # define debug(...) void(0) #endif // ! I/O utilities // __int128_t std::ostream& operator<<(std::ostream& dest, __int128_t value) { std::ostream::sentry s(dest); if (s) { __uint128_t tmp = value < 0 ? -value : value; char buffer[128]; char* d = std::end(buffer); do { --d; *d = "0123456789"[tmp % 10]; tmp /= 10; } while (tmp != 0); if (value < 0) { --d; *d = '-'; } int len = std::end(buffer) - d; if (dest.rdbuf()->sputn(d, len) != len) { dest.setstate(std::ios_base::badbit); } } return dest; } // __uint128_t std::ostream& operator<<(std::ostream& dest, __uint128_t value) { std::ostream::sentry s(dest); if (s) { char buffer[128]; char* d = std::end(buffer); do { --d; *d = "0123456789"[value % 10]; value /= 10; } while (value != 0); int len = std::end(buffer) - d; if (dest.rdbuf()->sputn(d, len) != len) { dest.setstate(std::ios_base::badbit); } } return dest; } // pair template std::ostream& operator<<(std::ostream& out, const std::pair& a) { return out << a.first << ' ' << a.second; } // tuple template std::ostream& operator<<(std::ostream& out, const std::tuple& a) { if constexpr (N >= std::tuple_size_v>) return out; else { out << std::get(a); if constexpr (N + 1 < std::tuple_size_v>) out << ' '; return operator<<(out, a); } } // vector template std::ostream& operator<<(std::ostream& out, const std::vector& a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } // array template std::ostream& operator<<(std::ostream& out, const std::array& a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } inline void print() { std::cout << '\n'; } template inline void print(const Head& head, const Tail &...tails) { std::cout << head; if (sizeof...(tails)) std::cout << ' '; print(tails...); } template auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(std::cout << *v.begin(), void()) { for (auto it = v.begin(); it != v.end();) { std::cout << *it; if (++it != v.end()) std::cout << sep; } std::cout << end; } __int128_t stoi128(const std::string& s) { __int128_t ret = 0; for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0'; if (s[0] == '-') ret = -ret; return ret; } __uint128_t stou128(const std::string& s) { __uint128_t ret = 0; for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0'; return ret; } // __int128_t std::istream& operator>>(std::istream& in, __int128_t& v) { std::string s; in >> s; v = stoi128(s); return in; } // __uint128_t std::istream& operator>>(std::istream& in, __uint128_t& v) { std::string s; in >> s; v = stou128(s); return in; } // pair template std::istream& operator>>(std::istream& in, std::pair& a) { return in >> a.first >> a.second; } // tuple template std::istream& operator>>(std::istream& in, std::tuple& a) { if constexpr (N >= std::tuple_size_v>) return in; else return operator>>(in >> std::get(a), a); } // vector template std::istream& operator>>(std::istream& in, std::vector& a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } // array template std::istream& operator>>(std::istream& in, std::array& a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } template void read(Args &...args) { (std::cin >> ... >> args); } // ! integral utilities // Returns pow(-1, n) template constexpr inline int pow_m1(T n) { return -(n & 1) | 1; } // Returns pow(-1, n) template <> constexpr inline int pow_m1(bool n) { return -int(n) | 1; } // Returns floor(x / y) template constexpr inline T fld(const T x, const T y) { return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y; } template constexpr inline T cld(const T x, const T y) { return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y; } template >, std::nullptr_t> = nullptr> __attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u32(x); } template , std::nullptr_t> = nullptr> __attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u64(x); } template >, std::nullptr_t> = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num; } template , std::nullptr_t> = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clzll(x) : suisen::bit_num; } template >, std::nullptr_t> = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num; } template , std::nullptr_t> = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctzll(x) : suisen::bit_num; } template constexpr inline int floor_log2(const T x) { return suisen::bit_num - 1 - count_lz(x); } template constexpr inline int ceil_log2(const T x) { return floor_log2(x) + ((x & -x) != x); } template constexpr inline int kth_bit(const T x, const unsigned int k) { return (x >> k) & 1; } template constexpr inline int parity(const T x) { return popcount(x) & 1; } // ! container template auto priqueue_comp(const Comparator comparator) { return std::priority_queue, Comparator>(comparator); } template void sort_unique_erase(Container& a) { std::sort(a.begin(), a.end()); a.erase(std::unique(a.begin(), a.end()), a.end()); } template auto foreach_adjacent_values(InputIterator first, InputIterator last, BiConsumer f) -> decltype(f(*first++, *last), void()) { if (first != last) for (auto itr = first, itl = itr++; itr != last; itl = itr++) f(*itl, *itr); } template auto foreach_adjacent_values(Container &&c, BiConsumer f) -> decltype(c.begin(), c.end(), void()) { foreach_adjacent_values(c.begin(), c.end(), f); } // ! other utilities // x <- min(x, y). returns true iff `x` has chenged. template inline bool chmin(T& x, const T& y) { return y >= x ? false : (x = y, true); } // x <- max(x, y). returns true iff `x` has chenged. template inline bool chmax(T& x, const T& y) { return y <= x ? false : (x = y, true); } template , std::nullptr_t> = nullptr> std::string bin(T val, int bit_num = -1) { std::string res; if (bit_num != -1) { for (int bit = bit_num; bit-- > 0;) res += '0' + ((val >> bit) & 1); } else { for (; val; val >>= 1) res += '0' + (val & 1); std::reverse(res.begin(), res.end()); } return res; } template , std::nullptr_t> = nullptr> std::vector digits_low_to_high(T val, T base = 10) { std::vector res; for (; val; val /= base) res.push_back(val % base); if (res.empty()) res.push_back(T{ 0 }); return res; } template , std::nullptr_t> = nullptr> std::vector digits_high_to_low(T val, T base = 10) { auto res = digits_low_to_high(val, base); std::reverse(res.begin(), res.end()); return res; } template std::string join(const std::vector& v, const std::string& sep, const std::string& end) { std::ostringstream ss; for (auto it = v.begin(); it != v.end();) { ss << *it; if (++it != v.end()) ss << sep; } ss << end; return ss.str(); } template auto transform_to_vector(const Func &f, const Seq &s) { std::vector> v; v.reserve(std::size(s)), std::transform(std::begin(s), std::end(s), std::back_inserter(v), f); return v; } template auto copy_to_vector(const Seq &s) { std::vector v; v.reserve(std::size(s)), std::copy(std::begin(s), std::end(s), std::back_inserter(v)); return v; } template Seq concat(Seq s, const Seq &t) { s.reserve(std::size(s) + std::size(t)); std::copy(std::begin(t), std::end(t), std::back_inserter(s)); return s; } template std::vector split(const Seq s, typename Seq::value_type delim) { std::vector res; for (auto itl = std::begin(s), itr = itl;; itl = ++itr) { while (itr != std::end(s) and *itr != delim) ++itr; res.emplace_back(itl, itr); if (itr == std::end(s)) return res; } } int digit_to_int(char c) { return c - '0'; } int lowercase_to_int(char c) { return c - 'a'; } int uppercase_to_int(char c) { return c - 'A'; } std::vector digit_str_to_ints(const std::string &s) { return transform_to_vector(digit_to_int, s); } std::vector lowercase_str_to_ints(const std::string &s) { return transform_to_vector(lowercase_to_int, s); } std::vector uppercase_str_to_ints(const std::string &s) { return transform_to_vector(uppercase_to_int, s); } const std::string Yes = "Yes", No = "No", YES = "YES", NO = "NO"; namespace suisen {} using namespace suisen; using namespace std; struct io_setup { io_setup(int precision = 20) { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(precision); } } io_setup_ {}; // ! code from here #include using mint = atcoder::modint998244353; namespace atcoder { std::istream& operator>>(std::istream& in, mint& a) { long long e; in >> e; a = e; return in; } std::ostream& operator<<(std::ostream& out, const mint& a) { out << a.val(); return out; } } // namespace atcoder #include #include #include #include namespace suisen { template struct Matrix { std::vector> dat; Matrix() {} Matrix(int n) : Matrix(n, n) {} Matrix(int n, int m, T fill_value = T(0)) : dat(n, std::vector(m, fill_value)) {} Matrix(const std::vector>& dat) : dat(dat) {} const std::vector& operator[](int i) const { return dat[i]; } std::vector& operator[](int i) { return dat[i]; } operator std::vector>() const { return dat; } friend bool operator==(const Matrix& A, const Matrix& B) { return A.dat == B.dat; } friend bool operator!=(const Matrix& A, const Matrix& B) { return A.dat != B.dat; } std::pair shape() const { return dat.empty() ? std::make_pair(0, 0) : std::make_pair(dat.size(), dat[0].size()); } int row_size() const { return dat.size(); } int col_size() const { return dat.empty() ? 0 : dat[0].size(); } friend Matrix& operator+=(Matrix& A, const Matrix& B) { assert(A.shape() == B.shape()); auto [n, m] = A.shape(); for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) A.dat[i][j] += B.dat[i][j]; return A; } friend Matrix& operator-=(Matrix& A, const Matrix& B) { assert(A.shape() == B.shape()); auto [n, m] = A.shape(); for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) A.dat[i][j] -= B.dat[i][j]; return A; } friend Matrix& operator*=(Matrix& A, const Matrix& B) { return A = A * B; } friend Matrix& operator*=(Matrix& A, const T& val) { for (auto& row : A.dat) for (auto& elm : row) elm *= val; return A; } friend Matrix& operator/=(Matrix& A, const T& val) { return A *= T(1) / val; } friend Matrix& operator/=(Matrix& A, const Matrix& B) { return A *= B.inv(); } friend Matrix operator+(Matrix A, const Matrix& B) { A += B; return A; } friend Matrix operator-(Matrix A, const Matrix& B) { A -= B; return A; } friend Matrix operator*(const Matrix& A, const Matrix& B) { assert(A.col_size() == B.row_size()); const int n = A.row_size(), m = A.col_size(), l = B.col_size(); if (std::min({ n, m, l }) <= 70) { // naive Matrix C(n, l); for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) for (int k = 0; k < l; ++k) { C.dat[i][k] += A.dat[i][j] * B.dat[j][k]; } return C; } // strassen const int nl = 0, nm = n >> 1, nr = nm + nm; const int ml = 0, mm = m >> 1, mr = mm + mm; const int ll = 0, lm = l >> 1, lr = lm + lm; auto A00 = A.submatrix(nl, nm, ml, mm), A01 = A.submatrix(nl, nm, mm, mr); auto A10 = A.submatrix(nm, nr, ml, mm), A11 = A.submatrix(nm, nr, mm, mr); auto B00 = B.submatrix(ml, mm, ll, lm), B01 = B.submatrix(ml, mm, lm, lr); auto B10 = B.submatrix(mm, mr, ll, lm), B11 = B.submatrix(mm, mr, lm, lr); auto P0 = (A00 + A11) * (B00 + B11); auto P1 = (A10 + A11) * B00; auto P2 = A00 * (B01 - B11); auto P3 = A11 * (B10 - B00); auto P4 = (A00 + A01) * B11; auto P5 = (A10 - A00) * (B00 + B01); auto P6 = (A01 - A11) * (B10 + B11); Matrix C(n, l); C.assign_submatrix(nl, ll, P0 + P3 - P4 + P6), C.assign_submatrix(nl, lm, P2 + P4); C.assign_submatrix(nm, ll, P1 + P3), C.assign_submatrix(nm, lm, P0 + P2 - P1 + P5); // fractions if (l != lr) { for (int i = 0; i < nr; ++i) for (int j = 0; j < mr; ++j) C.dat[i][lr] += A.dat[i][j] * B.dat[j][lr]; } if (m != mr) { for (int i = 0; i < nr; ++i) for (int k = 0; k < l; ++k) C.dat[i][k] += A.dat[i][mr] * B.dat[mr][k]; } if (n != nr) { for (int j = 0; j < m; ++j) for (int k = 0; k < l; ++k) C.dat[nr][k] += A.dat[nr][j] * B.dat[j][k]; } return C; } friend Matrix operator*(const T& val, Matrix A) { A *= val; return A; } friend Matrix operator*(Matrix A, const T& val) { A *= val; return A; } friend Matrix operator/(const Matrix& A, const Matrix& B) { return A * B.inv(); } friend Matrix operator/(Matrix A, const T& val) { A /= val; return A; } friend Matrix operator/(const T& val, const Matrix& A) { return val * A.inv(); } friend std::vector operator*(const Matrix& A, const std::vector& x) { const auto [n, m] = A.shape(); assert(m == int(x.size())); std::vector b(n, T(0)); for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) b[i] += A.dat[i][j] * x[j]; return b; } static Matrix e0(int n) { return Matrix(n, Identity::ADD); } static Matrix e1(int n) { return Matrix(n, Identity::MUL); } Matrix pow(long long b) const { assert_square(); assert(b >= 0); Matrix res = e1(row_size()), p = *this; for (; b; b >>= 1) { if (b & 1) res *= p; p *= p; } return res; } Matrix inv() const { return *safe_inv(); } std::optional> safe_inv() const { assert_square(); Matrix A = *this; const int n = A.row_size(); for (int i = 0; i < n; ++i) { A[i].resize(2 * n, T{ 0 }); A[i][n + i] = T{ 1 }; } for (int i = 0; i < n; ++i) { for (int k = i; k < n; ++k) if (A[k][i] != T{ 0 }) { std::swap(A[i], A[k]); T c = T{ 1 } / A[i][i]; for (int j = i; j < 2 * n; ++j) A[i][j] *= c; break; } if (A[i][i] == T{ 0 }) return std::nullopt; for (int k = 0; k < n; ++k) if (k != i and A[k][i] != T{ 0 }) { T c = A[k][i]; for (int j = i; j < 2 * n; ++j) A[k][j] -= c * A[i][j]; } } for (auto& row : A.dat) row.erase(row.begin(), row.begin() + n); return A; } T det() const { assert_square(); Matrix A = *this; bool sgn = false; const int n = A.row_size(); for (int j = 0; j < n; ++j) for (int i = j + 1; i < n; ++i) if (A[i][j] != T{ 0 }) { std::swap(A[j], A[i]); T q = A[i][j] / A[j][j]; for (int k = j; k < n; ++k) A[i][k] -= A[j][k] * q; sgn = not sgn; } T res = sgn ? T{ -1 } : T{ +1 }; for (int i = 0; i < n; ++i) res *= A[i][i]; return res; } T det_arbitrary_mod() const { assert_square(); Matrix A = *this; bool sgn = false; const int n = A.row_size(); for (int j = 0; j < n; ++j) for (int i = j + 1; i < n; ++i) { for (; A[i][j].val(); sgn = not sgn) { std::swap(A[j], A[i]); T q = A[i][j].val() / A[j][j].val(); for (int k = j; k < n; ++k) A[i][k] -= A[j][k] * q; } } T res = sgn ? -1 : +1; for (int i = 0; i < n; ++i) res *= A[i][i]; return res; } void assert_square() const { assert(row_size() == col_size()); } Matrix submatrix(int row_begin, int row_end, int col_begin, int col_end) const { Matrix A(row_end - row_begin, col_end - col_begin); for (int i = row_begin; i < row_end; ++i) for (int j = col_begin; j < col_end; ++j) { A[i - row_begin][j - col_begin] = dat[i][j]; } return A; } void assign_submatrix(int row_begin, int col_begin, const Matrix& A) { const int n = A.row_size(), m = A.col_size(); assert(row_begin + n <= row_size() and col_begin + m <= col_size()); for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) { dat[row_begin + i][col_begin + j] = A[i][j]; } } private: enum class Identity { ADD, MUL }; Matrix(int n, Identity ident) : Matrix::Matrix(n) { if (ident == Identity::MUL) for (int i = 0; i < n; ++i) dat[i][i] = 1; } }; } // namespace suisen namespace suisen { template class CoordinateCompressorBuilder { public: struct Compressor { public: static constexpr int absent = -1; // default constructor Compressor() : _xs(std::vector{}) {} // Construct from strictly sorted vector Compressor(const std::vector &xs) : _xs(xs) { assert(is_strictly_sorted(xs)); } // Return the number of distinct keys. int size() const { return _xs.size(); } // Check if the element is registered. bool has_key(const T &e) const { return std::binary_search(_xs.begin(), _xs.end(), e); } // Compress the element. if not registered, returns `default_value`. (default: Compressor::absent) int comp(const T &e, int default_value = absent) const { const int res = min_geq_index(e); return res != size() and _xs[res] == e ? res : default_value; } // Restore the element from the index. T decomp(const int compressed_index) const { return _xs[compressed_index]; } // Compress the element. Equivalent to call `comp(e)` int operator[](const T &e) const { return comp(e); } // Return the minimum registered value greater than `e`. if not exists, return `default_value`. T min_gt(const T &e, const T &default_value) const { auto it = std::upper_bound(_xs.begin(), _xs.end(), e); return it == _xs.end() ? default_value : *it; } // Return the minimum registered value greater than or equal to `e`. if not exists, return `default_value`. T min_geq(const T &e, const T &default_value) const { auto it = std::lower_bound(_xs.begin(), _xs.end(), e); return it == _xs.end() ? default_value : *it; } // Return the maximum registered value less than `e`. if not exists, return `default_value` T max_lt(const T &e, const T &default_value) const { auto it = std::upper_bound(_xs.rbegin(), _xs.rend(), e, std::greater()); return it == _xs.rend() ? default_value : *it; } // Return the maximum registered value less than or equal to `e`. if not exists, return `default_value` T max_leq(const T &e, const T &default_value) const { auto it = std::lower_bound(_xs.rbegin(), _xs.rend(), e, std::greater()); return it == _xs.rend() ? default_value : *it; } // Return the compressed index of the minimum registered value greater than `e`. if not exists, return `compressor.size()`. int min_gt_index(const T &e) const { return std::upper_bound(_xs.begin(), _xs.end(), e) - _xs.begin(); } // Return the compressed index of the minimum registered value greater than or equal to `e`. if not exists, return `compressor.size()`. int min_geq_index(const T &e) const { return std::lower_bound(_xs.begin(), _xs.end(), e) - _xs.begin(); } // Return the compressed index of the maximum registered value less than `e`. if not exists, return -1. int max_lt_index(const T &e) const { return int(_xs.rend() - std::upper_bound(_xs.rbegin(), _xs.rend(), e, std::greater())) - 1; } // Return the compressed index of the maximum registered value less than or equal to `e`. if not exists, return -1. int max_leq_index(const T &e) const { return int(_xs.rend() - std::lower_bound(_xs.rbegin(), _xs.rend(), e, std::greater())) - 1; } private: std::vector _xs; static bool is_strictly_sorted(const std::vector &v) { return std::adjacent_find(v.begin(), v.end(), std::greater_equal()) == v.end(); } }; CoordinateCompressorBuilder() : _xs(std::vector{}) {} explicit CoordinateCompressorBuilder(const std::vector &xs) : _xs(xs) {} explicit CoordinateCompressorBuilder(std::vector &&xs) : _xs(std::move(xs)) {} template > = nullptr> CoordinateCompressorBuilder(const int n, Gen generator) { reserve(n); for (int i = 0; i < n; ++i) push(generator(i)); } // Attempt to preallocate enough memory for specified number of elements. void reserve(int n) { _xs.reserve(n); } // Add data. void push(const T &first) { _xs.push_back(first); } // Add data. void push(T &&first) { _xs.push_back(std::move(first)); } // Add data in the range of [first, last). template auto push(const Iterator &first, const Iterator &last) -> decltype(std::vector{}.push_back(*first), void()) { for (auto it = first; it != last; ++it) _xs.push_back(*it); } // Add all data in the container. Equivalent to `push(iterable.begin(), iterable.end())`. template auto push(const Iterable &iterable) -> decltype(std::vector{}.push_back(*iterable.begin()), void()) { push(iterable.begin(), iterable.end()); } // Add data. template void emplace(Args &&...args) { _xs.emplace_back(std::forward(args)...); } // Build compressor. auto build() { std::sort(_xs.begin(), _xs.end()), _xs.erase(std::unique(_xs.begin(), _xs.end()), _xs.end()); return Compressor {_xs}; } // Build compressor from vector. static auto build(const std::vector &xs) { return CoordinateCompressorBuilder(xs).build(); } // Build compressor from vector. static auto build(std::vector &&xs) { return CoordinateCompressorBuilder(std::move(xs)).build(); } // Build compressor from generator. template > = nullptr> static auto build(const int n, Gen generator) { return CoordinateCompressorBuilder(n, generator).build(); } private: std::vector _xs; }; } // namespace suisen int main() { int n; read(n); ++n; Matrix A(n, n); REP(i, n) { REP(j, n) { mint x; read(x); A[i][j] = -x; } A[i][i] = 1; } A = A.inv(); REP(i, n) { debug(A[i]); } int q; read(q); LOOP(q) { int k; read(k); CoordinateCompressorBuilder builder; builder.push(0); builder.push(n - 1); vector> ts(k); for (auto& [u, v, c] : ts) { read(u, v, c); builder.push(u); builder.push(v); } auto comp = builder.build(); const int m = comp.size(); vector>> h(m); for (auto& [u, v, c] : ts) { u = comp[u]; v = comp[v]; h[u].emplace_back(v, c); } array, 2> g{ vector(m), vector(m) }; g[0][0] = 1; REP(i, m) { REP(j, i + 1, m) { g[1][j] += g[0][i] * A[comp.decomp(i)][comp.decomp(j)]; } for (auto [j, c] : h[i]) { g[0][j] += (g[0][i] + g[1][i]) * c; } } print(g[0].back() + g[1].back()); } return 0; }