#include #include typedef long long int ll; typedef long double ld; using namespace std; using namespace atcoder; #define inf 1010000000 #define llinf 1001000000000000000ll #define pi 3.141592653589793238 #define rep(i, n) for(ll i = 0; i < (n); i++) #define rep1(i, n) for(ll i = 1; i <= (n); i++) #define rep2(i,l,r) for(ll i = (l); i < (r); i++) #define per(i, n) for(ll i = (n)-1; i >= 0; i--) #define rng(a) a.begin(),a.end() #define fi first #define se second #define pb push_back #define eb emplace_back #define pob pop_back #define mp make_pair #define st string #define sz(x) (int)(x).size() #define mems(x) memset(x, -1, sizeof(x)); #define pcnt __builtin_popcountll #define _GLIBCXX_DEBUG #define dame { puts("-1"); return 0;} #define yes { puts("Yes"); return 0;} #define no { puts("No"); return 0;} #define ret(x) { cout<<(x)< inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false;} template inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false;} // 仮マクロ 便利だったら昇格 #define dump(x) { cout << #x << " = " << (x) << endl;} #define rets(x) { cout<<(x)<< " ";} #define Endl cout<>x[loop];} #define bit(n) (1LL<<(n)) #define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end()) template inline T in(){ T x; cin >> x; return (x);} // ここまで仮マクロ // srand((unsigned)time(NULL)); rand()を用いる際にmainの頭に置く // clock()/CLOCKS_PER_SEC 秒数を知りたいときに用いる #define mod 998244353 using mint = modint998244353; /* #define mod 1000000007 using mint = modint1000000007; */ vector dx={1,0,-1,0}; vector dy={0,1,0,-1}; using pl = pair; using ppl = pair; using V = vector; using Graph = vector>; // G.assign(n, vector()); グローバル変数にGを置く時に置く // 関数を置くのはここ以下 // 事前にO(N)で準備、O(1)で取り出す const ll MAX = 1000000; vector fac,finv,inv; void binom_init() { fac.resize(MAX); finv.resize(MAX); inv.resize(MAX); fac[0] = fac[1] = 1; inv[1] = 1; finv[0] = finv[1] = 1; for(int i=2; i> h >> w; if(h>w) swap(h,w); vector v1(h+1),v2(w+1); rep(i,h+1){ v1[i] = binom(i,h-i); v1[i] *= finv[i]; } rep(i,w+1){ v2[i] = binom(i,w-i); v2[i] *= finv[i]; } vector v = convolution(v1,v2); mint ans = 0; rep(i,(ll)v.size()){ ans += v[i]*fac[i]; } ret(ans.val()) }