class PrimeNumbers: def __init__(self,nmax): rootnmax = int(nmax**0.5) self.prime_judgement = [True]*(rootnmax+1) self.prime_judgement[0] = self.prime_judgement[1] = False for i in range(2,rootnmax+1): if self.prime_judgement[i]: for j in range(2,rootnmax//i+1): self.prime_judgement[i*j] = False self.prime_list = [] for i,flag in enumerate(self.prime_judgement): if flag: self.prime_list.append(i) def prime_factorization(self,n): return_list = [] for i in self.prime_list: if n==1 or i*i>n: break if n%i==0: return_list.append([i,0]) while n%i==0: return_list[-1][1] += 1; n //= i if n!=1: return_list.append([n,1]) return return_list def divisors_enumeration(self,n): divisors = [1] for p,v in self.prime_factorization(n): for i in range(len(divisors)): for j in range(v): divisors.append(divisors[i]*p**(j+1)) return set(divisors) from math import gcd n = int(input()); mod = 998244353 pn = PrimeNumbers(n); dn = pn.divisors_enumeration(n); d = {} for v in dn-{1}: d[v] = dn-pn.divisors_enumeration(v) dp = {v:1 for v in dn} for u in sorted(dn-{1}): for v in d[u]: l = u*v//gcd(u,v); dp[l] = (dp[l]+dp[u])%mod print(dp[n])