#include using namespace std; #include using namespace atcoder; template inline bool chmax(T &a, T b) { return ((a < b) ? (a = b, true) : (false)); } template inline bool chmin(T &a, T b) { return ((a > b) ? (a = b, true) : (false)); } #define rep(i, n) for (long long i = 0; i < (long long)(n); i++) #define rep2(i, m ,n) for (int i = (m); i < (long long)(n); i++) #define REP(i, n) for (long long i = 1; i < (long long)(n); i++) typedef long long ll; #pragma GCC target("avx512f") #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #define updiv(N,X) (N + X - 1) / X #define l(n) n.begin(),n.end() #define mat vector> #define YesNo(Q) Q==1?cout<<"Yes":cout<<"No" using P = pair; using mint = modint; const int MOD = 998244353LL; const ll INF = 999999999999LL; vector fact, fact_inv, inv; /* init_nCk :二項係数のための前処理 計算量:O(n) */ template void input(vector &v){ rep(i,v.size()){cin>>v[i];} return; } void init_nCk(int SIZE) { fact.resize(SIZE + 5); fact_inv.resize(SIZE + 5); inv.resize(SIZE + 5); fact[0] = fact[1] = 1; fact_inv[0] = fact_inv[1] = 1; inv[1] = 1; for (int i = 2; i < SIZE + 5; i++) { fact[i] = fact[i - 1] * i % MOD; inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD; fact_inv[i] = fact_inv[i - 1] * inv[i] % MOD; } } /* nCk :MODでの二項係数を求める(前処理 int_nCk が必要) 計算量:O(1) */ long long nCk(int n, int k) { assert(!(n < k)); assert(!(n < 0 || k < 0)); return fact[n] * (fact_inv[k] * fact_inv[n - k] % MOD) % MOD; } long long modpow(long long a, long long n, long long mod) { long long res = 1; while (n > 0) { if (n & 1) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } ll POW(ll a,ll n){ long long res = 1; while (n > 0) { if (n & 1) res = res * a; a = a * a; n >>= 1; } return res; } struct unionfind{ vector par,siz; void reset(int n){par.resize(n);siz.resize(n);rep(i,n){par[i]=-1;siz[i]=1;}} int root(int x){ if(par[x]==-1){return x;} else{return par[x] = root(par[x]);} } bool issame(int x,int y){ return root(x)==root(y); } bool unite(int x,int y){ x = root(x);y=root(y); if(x == y){return false;} if(siz[x] < siz[y]){swap(x,y);} par[y] = x; siz[x] += siz[y]; return true; } int size(int x){ return siz[root(x)]; } }; struct graph{ vector > > val; void print(){ rep(i,val.size()){ rep(j,val[i].size()){ cout << val[i][j].first<<"/" <k);val[ n ].push_back( pair(k,cost) ); } void add2(int n,int k,ll cost){ val[ n ].push_back( pair(k,cost) ); val[ k ].push_back( pair(n,cost) );} vector dfs_basic(int a){ vectorseen(val.size(),-1); queue q;q.push(a);seen[a]=0; while(!q.empty()){ int wc=q.front(); q.pop(); rep(i,val[wc].size()){ if(-1==seen[val[wc][i].first]){q.push(val[wc][i].first);seen[val[wc][i].first]=seen[wc]+val[wc][i].second;} } } return seen; } vectordijkstra(int r){ vector d(val.size(), INF); d[r] = 0; priority_queue, greater

> pq; pq.push(P(0, r)); while (!pq.empty()) { P p = pq.top(); pq.pop(); int dist = p.first, u = p.second; if (dist > d[u]) continue; for (ll i = 0LL; i < (int)(val[u].size()); i++) { int v = val[u][i].first, w = val[u][i].second; if (d[v] > d[u] + w) { d[v] = d[u] + w; pq.push(P(d[v], v)); } } } return d; } ll classcal(){ std::priority_queue< pair>, // 要素の型はint std::vector>>, // 内部コンテナはstd::vector (デフォルトのまま) std::greater>> // 昇順 (デフォルトはstd::less) > pq; // priority_queue>> pq; ll costt=0; rep(i,val.size()){ rep(j,val[i].size()){ if(val[i][j].first>i){ pq.push(pair(val[i][j].second,pair(i,val[i][j].first))); } } } dsu d(val.size()); while(!pq.empty()){ pair> ee=pq.top(); pq.pop(); if(d.same(ee.second.first,ee.second.second)){continue;} costt += ee.first; d.merge(ee.second.first,ee.second.second); } return costt; } }; // N の約数をすべて求める関数 ll cd(long long N) { // 答えを表す集合 long long res=0; // 各整数 i が N の約数かどうかを調べる for (long long i = 1; i * i <= N; ++i) { // i が N の約数でない場合はスキップ if (N % i != 0) continue; // i は約数である res ++; // N ÷ i も約数である (重複に注意) if (N / i != i){res += 1;} } // 約数を小さい順に並び替えて出力 return res; } ll md; /// 行列積 mat mat_mul(mat &a, mat &b) { mat res(a.size(), vector(b[0].size())); for (int i = 0; i < (int)(a.size()); i++) { for (int j = 0; j < (int)(b[0].size()); j++) { for (int k = 0; k < (int)(b.size()); k++) { (res[i][j] += a[i][k] * b[k][j]) %= md; } } } return res; } /// 行列累乗 mat mat_pow(mat a, long long n) { mat res(a.size(), vector(a.size())); // 単位行列で初期化 for (int i = 0; i < (int)(a.size()); i++) res[i][i] = 1; // 繰り返し二乗法 while (n > 0) { if (n & 1) res = mat_mul(a, res); a = mat_mul(a, a); n >>= 1; } return res; } int main() { int n;cin>>n; rep(i,n){ string s;cin>>s; cout << s; } cout << endl; }