mod=998244353 def cmb(n,r): if r<0 or r>n: return 0 return ((g1[n]*g2[r]%mod)*g2[n-r])%mod N=300000 g1=[1]*(N+3) for i in range(2,N+3): g1[i]=g1[i-1]*i%mod g2=[0]*len(g1) g2[-1]=pow(g1[-1],mod-2,mod) for i in range(N+1,-1,-1): g2[i]=g2[i+1]*(i+1)%mod inv=[0]*(N+3) for i in range(1,N+3): inv[i]=g2[i]*g1[i-1]%mod N,M=map(int,input().split()) P=[-1]*N for i in range(M): p,k=map(int,input().split()) P[k-1]=p-1 class fenwick_tree(): n=1 data=[0 for i in range(n)] def __init__(self,N): self.n=N self.data=[0 for i in range(N)] def add(self,p,x): assert 0<=p0): s+=self.data[r-1] r-=r&-r return s BIT=fenwick_tree(N+2) V=g1[N-M] ANS=0 for i in range(N): if P[i]>=0: ANS=(ANS+V*BIT.sum(P[i]+1,N))%mod BIT.add(P[i],1) ANS=(ANS+((((N-M)*(N-M-1))//2)%mod)*V*inv[2])%mod C=[1]*(N+1) C[0]=0 for i in range(N): if P[i]>=0: C[P[i]+1]=0 for i in range(N): C[i+1]+=C[i] D=0 V=V*inv[C[-1]]%mod for i in range(N): if P[i]>=0: ANS=(ANS+(V*(C[-1]-C[P[i]+1])%mod)*D)%mod else: D+=1 P=P[::-1] D=0 for i in range(N): if P[i]>=0: ANS=(ANS+(V*C[P[i]]%mod)*D)%mod else: D+=1 print(ANS)