#include #include #define rep(i,b) for(int i=0;i=0;i--) #define rep1(i,b) for(int i=1;i=x;i--) #define fore(i,a) for(auto& i:a) #define rng(x) (x).begin(), (x).end() #define rrng(x) (x).rbegin(), (x).rend() #define sz(x) ((int)(x).size()) #define pb push_back #define fi first #define se second #define pcnt __builtin_popcountll using namespace std; using namespace atcoder; using ll = long long; using ld = long double; template using mpq = priority_queue, greater>; template bool chmax(T &a, const T &b) { if (a bool chmin(T &a, const T &b) { if (b ll sumv(const vector&a){ll res(0);for(auto&&x:a)res+=x;return res;} bool yn(bool a) { if(a) {cout << "Yes" << endl; return true;} else {cout << "No" << endl; return false;}} #define dame { cout << "No" << endl; return;} #define dame1 { cout << -1 << endl; return;} #define cout2(x,y) cout << x << " " << y << endl; #define coutp(p) cout << p.fi << " " << p.se << endl; #define out cout << ans << endl; #define outd cout << fixed << setprecision(20) << ans << endl; #define outm cout << ans.val() << endl; #define outv fore(yans , ans) cout << yans << "\n"; #define outdv fore(yans , ans) cout << yans.val() << "\n"; #define coutv(v) {fore(vy , v) {cout << vy << " ";} cout << endl;} #define coutv2(v) fore(vy , v) cout << vy << "\n"; #define coutvm(v) {fore(vy , v) {cout << vy.val() << " ";} cout << endl;} #define coutvm2(v) fore(vy , v) cout << vy.val() << "\n"; using pll = pair;using pil = pair;using pli = pair;using pii = pair;using pdd = pair; using tp = tuple; using vi = vector;using vd = vector;using vl = vector;using vs = vector;using vb = vector; using vpii = vector;using vpli = vector;using vpll = vector;using vpil = vector; using vvi = vector>;using vvl = vector>;using vvs = vector>;using vvb = vector>; using vvpii = vector>;using vvpli = vector>;using vvpll = vector;using vvpil = vector; using mint = modint998244353; //using mint = modint1000000007; //using mint = dynamic_modint<0>; using vm = vector; using vvm = vector>; vector dx={1,0,-1,0,1,1,-1,-1},dy={0,1,0,-1,1,-1,1,-1}; ll gcd(ll a, ll b) { return a?gcd(b%a,a):b;} ll lcm(ll a, ll b) { return a/gcd(a,b)*b;} #define yes {cout <<"Yes"<= LLONG_MAX/a) break; tmp *= a; ret++; } ret--; return ret; } ll pow(ll x , ll a){ assert(x > 0); assert(a >= 0); ll ret = 1; rep(_,a){ assert (ret < LLONG_MAX/x); ret *= x; } return ret; } ll base(ll x,int a){ ll ans=0,y; for (ll i=0;x>0;i++){ y = x/a; ans += (x - y*a)*pow(10,i); x = y; } return ans; } string baseS(ll x,int a){ string ans; ll y; for (ll i=0;x>0;i++){ y = x/a; ans += '0' + (x - y*a); x = y; } reverse(rng(ans)); return ans; } ll inv(vl& v){ int n = sz(v); map mp; fore(y,v) mp[y] = 0; int m = 0; fore(y,mp) y.se = m++; fenwick_tree fw(m); ll ret = 0; rep(i,n){ int k = mp[v[i]]; ret += fw.sum(k+1,m); fw.add(k,1); } return ret; } } // namespace math // .div.mul : div[i]、mul[i]はそれぞれiの約数、倍数を格納している。 // .div_init(n) : div,mulを初期化。引数はnまで。n < 3e5程 // .divisor(x) : xの約数列挙。xは64bit整数。 // .floorsqrt(x) : floor(sqrt(x))。xは64bit整数。誤差は発生しない。 // .floorlog(a , x) : floor(loga(x))。xは64bit整数。誤差は発生しない。 // .pow(x , a) : x^a。誤差は発生しない。 // .base(x , a) : x(10進数)をa進数表記に。1 <= a <= 10。戻り値はll型。 // .baseS(x , a) : x(10進数)をa進数表記に。1 <= a <= 10。戻り値はstring型。 // .inv(v) : vの転倒数。 struct Sieve { int n; vector f, primes; Sieve(int n=1):n(n), f(n+1) { //初期化、f[x] = (xの最も小さい素因数) f[0] = f[1] = -1; for (ll i = 2; i <= n; ++i) { if (f[i]) continue; primes.push_back(i); f[i] = i; for (ll j = i*i; j <= n; j += i) { if (!f[j]) f[j] = i; } } } bool isPrime(int x) { return f[x] == x;} //素数判定 vector factorList(int x) {//素因数分解、xの素因数を小さいものから個数分列挙 vector res; while (x != 1) { res.push_back(f[x]); x /= f[x]; } return res; } vector factor(int x) {//素因数分解その2、xの素因数を小さいものから(素因数、個数)の形で列挙 vector fl = factorList(x); if (fl.size() == 0) return {}; vector res(1, pii(fl[0], 0)); for (int p : fl) { if (res.back().first == p) { res.back().second++; } else { res.emplace_back(p, 1); } } return res; } vector factor(ll x) {//素因数分解その2-2、xがllの場合 vector res; for (int p : primes) { int y = 0; while (x%p == 0) x /= p, ++y; if (y != 0) res.emplace_back(p,y); } if (x != 1) res.emplace_back(x,1); return res; } ll totient(ll x){ ll den = 1,num = 1; if (x<=n){ vpii v = factor((int)x); fore(y , v){ den *= y.fi; num *= (y.fi-1); } }else{ vpli v = factor(x); fore(y , v){ den *= y.fi; num *= (y.fi-1); } } assert(x%den==0); ll ret = x/den*num; return ret; } ///////////////// 以下、約数/倍数 ゼータ・メビウス変換 //////////////// // 以下、約数変換 template void div_zeta_trans(vector &a) { int n = sz(a)-1; fore(p, primes) { if (p > n) break; for (int i = 1; i * p <= n; ++i) a[i * p] += a[i]; } } template void div_mobius_trans(vector &a) { int n = sz(a)-1; fore(p, primes) { if (p > n) break; for (int i = n / p; i > 0; --i) a[i * p] -= a[i]; } } template void div_zeta_trans(map &a) { for (auto p = a.rbegin(); p != a.rend(); p++) { fore(y, a) { if (p->fi == y.fi) break; if (p->fi % y.fi == 0) p->se += y.se; } } } template void div_mobius_trans(map &a) { fore(y, a) { for (auto p = a.rbegin(); p != a.rend(); p++) { if (y.fi == p->fi) break; if (p->fi % y.fi == 0) p->se -= y.se; } } } // 以下、倍数変換 template void mul_zeta_trans(vector &a) { int n = sz(a)-1; fore(p, primes) { if (p > n) break; for (int i = n / p; i > 0; --i) a[i] += a[i * p]; } } template void mul_mobius_trans(vector &a) { int n = sz(a)-1; fore(p, primes) { if (p > n) break; for (int i = 1; i * p <= n; ++i) a[i] -= a[i * p]; } } template void mul_zeta_trans(map &a) { fore(y, a) { for (auto p = a.rbegin(); p != a.rend(); p++) { if (y.fi == p->fi) break; if (p->fi % y.fi == 0) y.se += p->se; } } } template void mul_mobius_trans(map &a) { for (auto p1 = a.rbegin(); p1 != a.rend(); p1++) { for (auto p2 = a.rbegin(); p2 != p1; p2++) { if (p2->fi % p1->fi == 0) p1->se += p2->se; } } } } sieve(1e6); // エラストテネスの篩 // .primes : n以下の素数を小さい順で格納しているベクトル。 // .isPrime(int x) : xの素数判定。boolで返す // .factorList(int x) : xの素因数分解。xの素因数を小さいものから個数分列挙。vectorで返す。 // .factor(int x) : 素因数分解その2、xの素因数を小さいものからpair{素因数、個数}の形で列挙。vectorで返す。xはllでもok。 // 宣言方法 : n=1e6(デフォルト)で初期化している。 // 注意点 : factorList、factorは呼び出し毎に約数個分の計算時間がかかってしまうため、何度も呼び出すときは予め別の配列に格納しておくこと。 // totient(ll x) : オイラーのトーシェント関数を返す // 約数/倍数 ゼータ・メビウス変換 // f = Σg : g → f をゼータ変換、f → g をメビウス変換 // mapはI が idx T が 関数値 ll coef[8000][8000]; void solve(){ ll n; cin>>n; vl d = math::divisor(n); vpli vp = sieve.factor(n); int k = sz(d); vvl dp(k); rep(i,k){ vl tmp(sz(vp)); rep(j,sz(vp)){ ll cnt = 0; ll y = d[i]; while(y%vp[j].fi==0){ y /= vp[j].fi; cnt++; } tmp[j] = cnt; } dp[i] = tmp; } rep(i,k) rep(j,k){ coef[i][j] = 1; rep(jj,sz(vp)){ if (dp[i][jj] < dp[j][jj]) coef[i][j] *= 1; else if(dp[i][jj] > dp[j][jj]) coef[i][j] *= 0; else coef[i][j] *= (dp[i][jj]+1); } } vm now(k); now[k-1] = 1; while(1){ vm tmp(k); swap(tmp,now); bool ok = false; rep(j,k){ if (tmp[j]==0) continue; if (j) ok = true; rep(i,j){ now[i] += mint(coef[i][j])*tmp[j]; } } now[0] += tmp[0]; if (!ok) break; } cout << now[0].val() << endl; return; } int main(){ ios::sync_with_stdio(false); cin.tie(0); int t = 1; //cin>>t; rep(i,t){ solve(); } return 0; }