#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include using namespace std; // 型名の短縮 using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair; using pll = pair; using pil = pair; using pli = pair; using vi = vector; using vvi = vector; using vvvi = vector; using vl = vector; using vvl = vector; using vvvl = vector; using vb = vector; using vvb = vector; using vvvb = vector; using vc = vector; using vvc = vector; using vvvc = vector; using vd = vector; using vvd = vector; using vvvd = vector; template using priority_queue_rev = priority_queue, greater>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) const vi DY = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004004004004004LL; double EPS = 1e-15; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x)) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x)) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define YES(b) {cout << ((b) ? "YES\n" : "NO\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 // 汎用関数の定義 template inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template inline T get(T set, int i) { return (set >> i) & T(1); } // 演算子オーバーロード template inline istream& operator>>(istream& is, pair& p) { is >> p.first >> p.second; return is; } template inline istream& operator>>(istream& is, vector& v) { repea(x, v) is >> x; return is; } template inline vector& operator--(vector& v) { repea(x, v) --x; return v; } template inline vector& operator++(vector& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include() #include using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif //using mint = modint1000000007; using mint = modint998244353; //using mint = modint; // mint::set_mod(m); namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } using vm = vector; using vvm = vector; using vvvm = vector; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define gcd __gcd #define dump(...) #define dumpel(v) #define dump_list(v) #define dump_mat(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) while (1) cout << "OLE"; } #endif //【平面上の点,二次元ベクトル】 /* * 平面における点/二次元ベクトルを表す構造体 * * Point() : O(1) * (0, 0) で初期化する. * * Point(T x, T y) : O(1) * (x, y) で初期化する. * * p1 == p2, p1 != p2, p1 < p2, p1 > p2, p1 <= p2, p1 >= p2 : O(1) * x 座標優先,次いで y 座標の大小比較を行う. * * p1 + p2, p1 - p2, c * p, p * c, p / c : O(1) * ベクトルとみなした加算,減算,スカラー倍,スカラー除算を行う.複合代入演算子も使用可. * * T sqnorm() : O(1) * 自身の 2 乗ノルムを返す. * * double norm() : O(1) * 自身のノルムを返す. * * Point normalize() : O(1) * 自身を正規化したベクトルを返す. * * T dot(Point p) : O(1) * 自身と p との内積を返す. * * T cross(Point p) : O(1) * 自身と p との外積を返す. * * double angle(Point p) : O(1) * 自身から p までの成す角度を返す. */ template struct Point { // 点の x 座標,y 座標 T x, y; // コンストラクタ Point() : x(0), y(0) {} Point(T x_, T y_) : x(x_), y(y_) {} // 代入 Point(const Point& old) = default; Point& operator=(const Point& other) = default; // キャスト operator Point() const { return Point((ll)x, (ll)y); } operator Point() const { return Point((double)x, (double)y); } // 入出力 friend istream& operator>>(istream& is, Point& p) { is >> p.x >> p.y; return is; } friend ostream& operator<<(ostream& os, const Point& p) { os << '(' << p.x << ',' << p.y << ')'; return os; } // 比較(x 座標優先) bool operator==(const Point& p) const { return x == p.x && y == p.y; } bool operator!=(const Point& p) const { return !(*this == p); } bool operator<(const Point& p) const { return x == p.x ? y < p.y : x < p.x; } bool operator>=(const Point& p) const { return !(*this < p); } bool operator>(const Point& p) const { return x == p.x ? y > p.y : x > p.x; } bool operator<=(const Point& p) const { return !(*this > p); } // 加算,減算,スカラー倍,スカラー除算 Point& operator+=(const Point& p) { x += p.x; y += p.y; return *this; } Point operator+(const Point& p) const { Point q(*this); return q += p; } Point& operator-=(const Point& p) { x -= p.x; y -= p.y; return *this; } Point operator-(const Point& p) const { Point q(*this); return q -= p; } Point& operator*=(const T& c) { x *= c; y *= c; return *this; } Point operator*(const T& c) const { Point q(*this); return q *= c; } Point& operator/=(const T& c) { x /= c; y /= c; return *this; } Point operator/(const T& c) const { Point q(*this); return q /= c; } friend Point operator*(const T& sc, const Point& p) { return p * sc; } Point operator-() const { Point a = *this; return a *= -1; } // 二乗ノルム,ノルム,正規化 T sqnorm() const { return x * x + y * y; } double norm() const { return sqrt((double)x * x + (double)y * y); } Point normalize() const { return Point(*this) / norm(); } // 内積,外積,成す角度 T dot(const Point& other) const { return x * other.x + y * other.y; } T cross(const Point& other) const { return x * other.y - y * other.x; } double angle(const Point& other) const { return atan2(this->cross(other), this->dot(other)); } }; //【平面内の多角形】 /* * Polygon(p[0..n)) : これらの点を周る順に頂点にもつ n 角形を表す. */ template using Polygon = vector>; //【凸包】O(n log n) /* * 点群 p[0..n) の凸包の頂点を反時計回りに格納したリスト ch を返す. * ch[0] は x 座標最小(同じものがあれば y 座標最小)の点とする. */ template Polygon convex_hull(vector> p) { // verify : https://onlinejudge.u-aizu.ac.jp/courses/library/4/CGL/all/CGL_4_A int n = sz(p); if (n == 0) return Polygon(); // x 座標を優先して昇順ソート(x 座標が同じなら y 座標昇順) sort(all(p)); // 凸包を成す頂点 Polygon ch; // まず x 座標昇順に見ていき,凸包の y 座標の小さい側を得る. int pt = 0; rep(i, n) { // 凸でない限り直前の点を除去することを繰り返す. // 凸かどうかは外積を用いて判定できる. while (pt >= 2 && (ch[pt - 1] - ch[pt - 2]).cross(p[i] - ch[pt - 2]) < 0) { ch.pop_back(); pt--; } // 今見ている点を暫定的に凸包に加える. ch.push_back(p[i]); pt++; } // 次に x 座標降順に見ていき,凸包の y 座標の大きい側を得る. repir(i, n - 2, 0) { // 凸でない限り直前の点を除去することを繰り返す. // 凸かどうかは外積を用いて判定できる. while (pt >= 2 && (ch[pt - 1] - ch[pt - 2]).cross(p[i] - ch[pt - 2]) < 0) { ch.pop_back(); pt--; } // 今見ている点を暫定的に凸包に加える. ch.push_back(p[i]); pt++; } // p[0] が重複してしまっているので取り除く. ch.pop_back(); return ch; } //【多角形の面積】O(n) /* * n 角形 poly の符号付き面積の 2 倍を返す. * * n 角形は頂点を並べた列として表し,反時計回りのとき面積は正とする. * (よって頂点の周る順の判定に用いることもできる.) */ template T doubled_area_polygon(const Polygon& poly) { // verify : https://onlinejudge.u-aizu.ac.jp/courses/library/4/CGL/all/CGL_3_A int n = sz(poly); T res = 0; rep(i, n) res += poly[i].cross(poly[(i + 1) % n]); // 面積の 2 倍を返しているので注意. return res; } int main() { int n; cin >> n; vector> p(n); cin >> p; auto c = convex_hull(p); int m = sz(c); dump(c); ll res = -INFL; if (m >= 4) { rep(i, m) repi(j, i + 1, m - 1) { ll a1 = -INFL; repi(k1, i + 1, j - 1) { chmax(a1, abs(doubled_area_polygon(Polygon{c[i], c[j], c[k1]}))); } ll a2 = -INFL; repi(k1, j + 1, i - 1 + m) { chmax(a2, abs(doubled_area_polygon(Polygon{c[i], c[j], c[k1 % m]}))); } chmax(res, a1 + a2); } } else { ll a = abs(doubled_area_polygon(Polygon{c[0], c[1], c[2]})); rep(i, n) { if (p[i] == c[0] || p[i] == c[1] || p[i] == c[2]) continue; chmax(res, a - abs(doubled_area_polygon(Polygon{c[0], c[1], p[i]}))); chmax(res, a - abs(doubled_area_polygon(Polygon{c[0], p[i], c[2]}))); chmax(res, a - abs(doubled_area_polygon(Polygon{p[i], c[1], c[2]}))); } } cout << res << endl; }