// start A.cpp // #pragma GCC target("avx2") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") #include using namespace std; using ll = long long; using ull = unsigned long long; template using pq = priority_queue; template using qp = priority_queue, greater>; #define vec(T, A, ...) vector A(__VA_ARGS__); #define vvec(T, A, h, ...) vector> A(h, vector(__VA_ARGS__)); #define vvvec(T, A, h1, h2, ...) vector>> A(h1, vector>(h2, vector(__VA_ARGS__))); #ifndef RIN__LOCAL #define endl "\n" #endif #define spa ' ' #define len(A) A.size() #define all(A) begin(A), end(A) #define fori1(a) for (ll _ = 0; _ < (a); _++) #define fori2(i, a) for (ll i = 0; i < (a); i++) #define fori3(i, a, b) for (ll i = (a); i < (b); i++) #define fori4(i, a, b, c) for (ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c)) #define overload4(a, b, c, d, e, ...) e #define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__) vector stoc(string &S) { int n = S.size(); vector ret(n); for (int i = 0; i < n; i++) ret[i] = S[i]; return ret; } #define INT(...) \ int __VA_ARGS__; \ inp(__VA_ARGS__); #define LL(...) \ ll __VA_ARGS__; \ inp(__VA_ARGS__); #define STRING(...) \ string __VA_ARGS__; \ inp(__VA_ARGS__); #define CHAR(...) \ char __VA_ARGS__; \ inp(__VA_ARGS__); #define VEC(T, A, n) \ vector A(n); \ inp(A); #define VVEC(T, A, n, m) \ vector> A(n, vector(m)); \ inp(A); const ll MOD1 = 1000000007; const ll MOD9 = 998244353; template auto min(const T &a) { return *min_element(all(a)); } template auto max(const T &a) { return *max_element(all(a)); } template auto clamp(T &a, const S &l, const S &r) { return (a > r ? r : a < l ? l : a); } template inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } template inline bool chclamp(T &a, const S &l, const S &r) { auto b = clamp(a, l, r); return (a != b ? a = b, 1 : 0); } void FLUSH() { cout << flush; } void print() { cout << endl; } template void print(Head &&head, Tail &&... tail) { cout << head; if (sizeof...(Tail)) cout << spa; print(forward(tail)...); } template void print(vector &A) { int n = A.size(); for (int i = 0; i < n; i++) { cout << A[i]; if (i != n - 1) cout << ' '; } cout << endl; } template void print(vector> &A) { for (auto &row : A) print(row); } template void print(pair &A) { cout << A.first << spa << A.second << endl; } template void print(vector> &A) { for (auto &row : A) print(row); } template void prisep(vector &A, S sep) { int n = A.size(); for (int i = 0; i < n; i++) { cout << A[i]; if (i != n - 1) cout << sep; } cout << endl; } template void priend(T A, S end) { cout << A << end; } template void priend(T A) { priend(A, spa); } template void inp(T &... a) { (cin >> ... >> a); } template void inp(vector &A) { for (auto &a : A) cin >> a; } template void inp(vector> &A) { for (auto &row : A) inp(row); } template void inp(pair &A) { inp(A.first, A.second); } template void inp(vector> &A) { for (auto &row : A) inp(row.first, row.second); } template T sum(vector &A) { T tot = 0; for (auto a : A) tot += a; return tot; } template vector compression(vector X) { sort(all(X)); X.erase(unique(all(X)), X.end()); return X; } vector> read_edges(int n, int m, bool direct = false, int indexed = 1) { vector> edges(n, vector()); for (int i = 0; i < m; i++) { INT(u, v); u -= indexed; v -= indexed; edges[u].push_back(v); if (!direct) edges[v].push_back(u); } return edges; } vector> read_tree(int n, int indexed = 1) { return read_edges(n, n - 1, false, indexed); } template vector>> read_wedges(int n, int m, bool direct = false, int indexed = 1) { vector>> edges(n, vector>()); for (int i = 0; i < m; i++) { INT(u, v); T w; inp(w); u -= indexed; v -= indexed; edges[u].push_back({v, w}); if (!direct) edges[v].push_back({u, w}); } return edges; } template vector>> read_wtree(int n, int indexed = 1) { return read_wedges(n, n - 1, false, indexed); } inline bool yes(bool f = true) { cout << (f ? "yes" : "no") << endl; return f; } inline bool Yes(bool f = true) { cout << (f ? "Yes" : "No") << endl; return f; } inline bool YES(bool f = true) { cout << (f ? "YES" : "NO") << endl; return f; } inline bool no(bool f = true) { cout << (!f ? "yes" : "no") << endl; return f; } inline bool No(bool f = true) { cout << (!f ? "Yes" : "No") << endl; return f; } inline bool NO(bool f = true) { cout << (!f ? "YES" : "NO") << endl; return f; } // start other/Modint.hpp template struct Modint { int x; Modint() : x(0) {} Modint(int64_t y) { if (y >= 0) x = y % MOD; else x = (y % MOD + MOD) % MOD; } Modint &operator+=(const Modint &p) { x += p.x; if (x >= MOD) x -= MOD; return *this; } Modint &operator-=(const Modint &p) { x -= p.x; if (x < 0) x += MOD; return *this; } Modint &operator*=(const Modint &p) { x = int(1LL * x * p.x % MOD); return *this; } Modint &operator/=(const Modint &p) { *this *= p.inverse(); return *this; } Modint &operator%=(const Modint &p) { assert(p.x == 0); return *this; } Modint operator-() const { return Modint(-x); } Modint &operator++() { x++; if (x == MOD) x = 0; return *this; } Modint &operator--() { if (x == 0) x = MOD; x--; return *this; } Modint operator++(int) { Modint result = *this; ++*this; return result; } Modint operator--(int) { Modint result = *this; --*this; return result; } friend Modint operator+(const Modint &lhs, const Modint &rhs) { return Modint(lhs) += rhs; } friend Modint operator-(const Modint &lhs, const Modint &rhs) { return Modint(lhs) -= rhs; } friend Modint operator*(const Modint &lhs, const Modint &rhs) { return Modint(lhs) *= rhs; } friend Modint operator/(const Modint &lhs, const Modint &rhs) { return Modint(lhs) /= rhs; } friend Modint operator%(const Modint &lhs, const Modint &rhs) { assert(rhs.x == 0); return Modint(lhs); } bool operator==(const Modint &p) const { return x == p.x; } bool operator!=(const Modint &p) const { return x != p.x; } bool operator<(const Modint &rhs) const { return x < rhs.x; } bool operator<=(const Modint &rhs) const { return x <= rhs.x; } bool operator>(const Modint &rhs) const { return x > rhs.x; } bool operator>=(const Modint &rhs) const { return x >= rhs.x; } Modint inverse() const { int a = x, b = MOD, u = 1, v = 0, t; while (b > 0) { t = a / b; a -= t * b; u -= t * v; swap(a, b); swap(u, v); } return Modint(u); } Modint pow(int64_t k) const { Modint ret(1); Modint y(x); while (k > 0) { if (k & 1) ret *= y; y *= y; k >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const Modint &p) { return os << p.x; } friend istream &operator>>(istream &is, Modint &p) { int64_t y; is >> y; p = Modint(y); return (is); } static int get_mod() { return MOD; } }; struct Arbitrary_Modint { int x; static int MOD; static void set_mod(int mod) { MOD = mod; } Arbitrary_Modint() : x(0) {} Arbitrary_Modint(int64_t y) { if (y >= 0) x = y % MOD; else x = (y % MOD + MOD) % MOD; } Arbitrary_Modint &operator+=(const Arbitrary_Modint &p) { x += p.x; if (x >= MOD) x -= MOD; return *this; } Arbitrary_Modint &operator-=(const Arbitrary_Modint &p) { x -= p.x; if (x < 0) x += MOD; return *this; } Arbitrary_Modint &operator*=(const Arbitrary_Modint &p) { x = int(1LL * x * p.x % MOD); return *this; } Arbitrary_Modint &operator/=(const Arbitrary_Modint &p) { *this *= p.inverse(); return *this; } Arbitrary_Modint &operator%=(const Arbitrary_Modint &p) { assert(p.x == 0); return *this; } Arbitrary_Modint operator-() const { return Arbitrary_Modint(-x); } Arbitrary_Modint &operator++() { x++; if (x == MOD) x = 0; return *this; } Arbitrary_Modint &operator--() { if (x == 0) x = MOD; x--; return *this; } Arbitrary_Modint operator++(int) { Arbitrary_Modint result = *this; ++*this; return result; } Arbitrary_Modint operator--(int) { Arbitrary_Modint result = *this; --*this; return result; } friend Arbitrary_Modint operator+(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) { return Arbitrary_Modint(lhs) += rhs; } friend Arbitrary_Modint operator-(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) { return Arbitrary_Modint(lhs) -= rhs; } friend Arbitrary_Modint operator*(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) { return Arbitrary_Modint(lhs) *= rhs; } friend Arbitrary_Modint operator/(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) { return Arbitrary_Modint(lhs) /= rhs; } friend Arbitrary_Modint operator%(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) { assert(rhs.x == 0); return Arbitrary_Modint(lhs); } bool operator==(const Arbitrary_Modint &p) const { return x == p.x; } bool operator!=(const Arbitrary_Modint &p) const { return x != p.x; } bool operator<(const Arbitrary_Modint &rhs) { return x < rhs.x; } bool operator<=(const Arbitrary_Modint &rhs) { return x <= rhs.x; } bool operator>(const Arbitrary_Modint &rhs) { return x > rhs.x; } bool operator>=(const Arbitrary_Modint &rhs) { return x >= rhs.x; } Arbitrary_Modint inverse() const { int a = x, b = MOD, u = 1, v = 0, t; while (b > 0) { t = a / b; a -= t * b; u -= t * v; swap(a, b); swap(u, v); } return Arbitrary_Modint(u); } Arbitrary_Modint pow(int64_t k) const { Arbitrary_Modint ret(1); Arbitrary_Modint y(x); while (k > 0) { if (k & 1) ret *= y; y *= y; k >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const Arbitrary_Modint &p) { return os << p.x; } friend istream &operator>>(istream &is, Arbitrary_Modint &p) { int64_t y; is >> y; p = Arbitrary_Modint(y); return (is); } static int get_mod() { return MOD; } }; int Arbitrary_Modint::MOD = 998244353; using modint9 = Modint<998244353>; using modint1 = Modint<1000000007>; using modint = Arbitrary_Modint; // end other/Modint.hpp // restart A.cpp using mint = modint9; // #include "other/fraction.hpp" // using mint = Fraction; // start data_structure/lazySegTree.hpp template struct lazy_segtree { public: explicit lazy_segtree(const vector &v) : _n(int(v.size())) { size = 1; log = 0; while (size < _n) { log++; size <<= 1; } d = vector(2 * size, e()); lz = vector(size, id()); for (int i = 0; i < _n; i++) d[size + i] = v[i]; for (int i = size - 1; i >= 1; i--) update(i); } explicit lazy_segtree(int n) : lazy_segtree(vector(n, e())) {} S prod(int l, int r) { if (l == r) return e(); l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } S sml = e(), smr = e(); while (l < r) { if (l & 1) sml = op(sml, d[l++]); if (r & 1) smr = op(d[--r], smr); l >>= 1; r >>= 1; } return op(sml, smr); } S all_prod() { return d[1]; } void apply(int l, int r, F f) { if (l == r) return; l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } { int l2 = l, r2 = r; while (l < r) { if (l & 1) all_apply(l++, f); if (r & 1) all_apply(--r, f); l >>= 1; r >>= 1; } l = l2; r = r2; } for (int i = 1; i <= log; i++) { if (((l >> i) << i) != l) update(l >> i); if (((r >> i) << i) != r) update((r - 1) >> i); } } private: int _n, size, log; vector d; vector lz; void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); } void all_apply(int k, F f) { d[k] = mapping(f, d[k]); if (k < size) lz[k] = composition(f, lz[k]); } void push(int k) { all_apply(2 * k, lz[k]); all_apply(2 * k + 1, lz[k]); lz[k] = id(); } }; // end data_structure/lazySegTree.hpp // restart A.cpp struct S { ll len; mint x0; mint x1; mint x2; }; S op(S l, S r) { return S{l.len + r.len, l.x0 + r.x0, l.x1 + r.x1, l.x2 + r.x2}; } S e() { return {0, 1, 0, 0}; } struct F { mint x0; mint x1; mint x2; }; S mapping(F f, S x) { return S{x.len, f.x0 * x.x0, f.x0 * x.x1 + f.x1 * x.x0, f.x0 * x.x2 + f.x1 * x.x1 + f.x2 * x.x0}; } F composition(F f, F x) { return F{f.x0 * x.x0, f.x0 * x.x1 + f.x1 * x.x0, f.x0 * x.x2 + f.x1 * x.x1 + f.x2 * x.x0}; } F id() { return F{1, 0, 0}; } void solve() { INT(n); vec(ll, X, 1, 0); vec(ll, L, n); vec(ll, R, n); fori(i, n) { inp(L[i], R[i]); R[i]++; X.push_back(L[i]); X.push_back(R[i]); } X = compression(X); int le = len(X); vec(S, ini, le - 1); fori(i, le - 1) { ini[i] = {X[i + 1] - X[i], 1, 0, 0}; } lazy_segtree seg(ini); fori(i, n) { int l = lower_bound(all(X), L[i]) - X.begin(); int r = lower_bound(all(X), R[i]) - X.begin(); seg.apply(l, r, F{1, mint(1) / (R[i] - L[i]), 0}); } mint inv2 = mint(1) / 2; mint ans = inv2 * inv2 * n * (n - 1); fori(i, le - 1) { auto res = seg.prod(i, i + 1); ans -= inv2 * res.x2 * res.len; } fori(i, 1, n + 1) ans *= i; print(ans); } int main() { cin.tie(0)->sync_with_stdio(0); // cout << fixed << setprecision(12); int t; t = 1; // cin >> t; while (t--) solve(); return 0; } // end A.cpp