#include using i32 = int; using u32 = unsigned int; using i64 = long long; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; using f64 = double; using f80 = long double; using f128 = __float128; constexpr i32 operator"" _i32(u64 v) { return v; } constexpr u32 operator"" _u32(u64 v) { return v; } constexpr i64 operator"" _i64(u64 v) { return v; } constexpr u64 operator"" _u64(u64 v) { return v; } constexpr f64 operator"" _f64(f80 v) { return v; } constexpr f80 operator"" _f80(f80 v) { return v; } using Istream = std::istream; using Ostream = std::ostream; using Str = std::string; template using Lt = std::less; template using Gt = std::greater; template using BSet = std::bitset; template using Pair = std::pair; template using Tup = std::tuple; template using Arr = std::array; template using Deq = std::deque; template using Set = std::set; template using MSet = std::multiset; template using USet = std::unordered_set; template using UMSet = std::unordered_multiset; template using Map = std::map; template using MMap = std::multimap; template using UMap = std::unordered_map; template using UMMap = std::unordered_multimap; template using Vec = std::vector; template using Stack = std::stack; template using Queue = std::queue; template using MaxHeap = std::priority_queue; template using MinHeap = std::priority_queue, Gt>; constexpr bool LOCAL = false; constexpr bool OJ = not LOCAL; template static constexpr T OjLocal(T oj, T local) { return LOCAL ? local : oj; } template constexpr T LIMMIN = std::numeric_limits::min(); template constexpr T LIMMAX = std::numeric_limits::max(); template constexpr T INF = (LIMMAX - 1) / 2; template constexpr T PI = T{3.141592653589793238462643383279502884}; template constexpr T TEN(int n) { return n == 0 ? T{1} : TEN(n - 1) * T{10}; } template constexpr bool chmin(T& a, const T& b) { return (a > b ? (a = b, true) : false); } template constexpr bool chmax(T& a, const T& b) { return (a < b ? (a = b, true) : false); } template constexpr T floorDiv(T x, T y) { assert(y != 0); if (y < 0) { x = -x, y = -y; } return x >= 0 ? x / y : (x - y + 1) / y; } template constexpr T ceilDiv(T x, T y) { assert(y != 0); if (y < 0) { x = -x, y = -y; } return x >= 0 ? (x + y - 1) / y : x / y; } template constexpr T powerMonoid(T v, I n, const T& e) { assert(n >= 0); if (n == 0) { return e; } return (n % 2 == 1 ? v * powerMonoid(v, n - 1, e) : powerMonoid(v * v, n / 2, e)); } template constexpr T powerInt(T v, I n) { return powerMonoid(v, n, T{1}); } template constexpr auto accumAll(const Vs& vs, Args... args) { return std::accumulate(std::begin(vs), std::end(vs), args...); } template constexpr auto sumAll(const Vs& vs) { return accumAll(vs, decltype(vs[0]){}); } template constexpr auto gcdAll(const Vs& vs) { return accumAll(vs, decltype(vs[0]){}, [&](auto v1, auto v2) { return std::gcd(v1, v2); }); } template constexpr int lbInd(const Vs& vs, const V& v) { return std::lower_bound(std::begin(vs), std::end(vs), v) - std::begin(vs); } template constexpr int ubInd(const Vs& vs, const V& v) { return std::upper_bound(std::begin(vs), std::end(vs), v) - std::begin(vs); } template constexpr void concat(Vs& vs1, const Vs vs2) { std::copy(std::begin(vs2), std::end(vs2), std::back_inserter(vs1)); } template constexpr Vs concatted(Vs vs1, const Vs& vs2) { concat(vs1, vs2); return vs1; } template constexpr void fillAll(Vs& arr, const V& v) { if constexpr (std::is_convertible::value) { arr = v; } else { for (auto& subarr : arr) { fillAll(subarr, v); } } } template constexpr Vec genVec(int n, F gen) { Vec ans; std::generate_n(std::back_inserter(ans), n, gen); return ans; } template constexpr auto maxAll(const Vs& vs) { return *std::max_element(std::begin(vs), std::end(vs)); } template constexpr auto minAll(const Vs& vs) { return *std::min_element(std::begin(vs), std::end(vs)); } template constexpr auto maxInd(const Vs& vs) { return *std::max_element(std::begin(vs), std::end(vs)); } template constexpr int minInd(const Vs& vs) { return std::min_element(std::begin(vs), std::end(vs)) - std::begin(vs); } template constexpr int maxInd(const Vs& vs) { return std::max_element(std::begin(vs), std::end(vs)) - std::begin(vs); } template constexpr Vec iotaVec(int n, T offset = 0) { Vec ans(n); std::iota(std::begin(ans), std::end(ans), offset); return ans; } template constexpr Vec iotaSort(const Vs& vs) { auto is = iotaVec(vs.size()); std::sort(std::begin(is), std::end(is), [&](int i, int j) { return vs[i] < vs[j]; }); return is; } inline Vec permInv(const Vec& is) { auto ris = is; for (int i = 0; i < (int)is.size(); i++) { ris[is[i]] = i; } return ris; } template constexpr void plusAll(Vs& vs, const V& v) { for (auto& v_ : vs) { v_ += v; } } template constexpr void reverseAll(Vs& vs) { std::reverse(std::begin(vs), std::end(vs)); } template constexpr Vs reversed(Vs vs) { reverseAll(vs); return vs; } template constexpr void sortAll(Vs& vs, Args... args) { std::sort(std::begin(vs), std::end(vs), args...); } template constexpr Vs sorted(Vs vs, Args... args) { sortAll(vs, args...); return vs; } inline Ostream& operator<<(Ostream& os, i128 v) { bool minus = false; if (v < 0) { minus = true, v = -v; } Str ans; if (v == 0) { ans = "0"; } while (v) { ans.push_back('0' + v % 10), v /= 10; } std::reverse(ans.begin(), ans.end()); return os << (minus ? "-" : "") << ans; } inline Ostream& operator<<(Ostream& os, u128 v) { Str ans; if (v == 0) { ans = "0"; } while (v) { ans.push_back('0' + v % 10), v /= 10; } std::reverse(ans.begin(), ans.end()); return os << ans; } constexpr bool isBitOn(u64 mask, int ind) { return (mask >> ind) & 1_u64; } constexpr bool isBitOff(u64 mask, int ind) { return not isBitOn(mask, ind); } constexpr int topBit(u64 v) { return v == 0 ? -1 : 63 - __builtin_clzll(v); } constexpr int lowBit(u64 v) { return v == 0 ? 64 : __builtin_ctzll(v); } constexpr int bitWidth(u64 v) { return topBit(v) + 1; } constexpr u64 bitCeil(u64 v) { return v ? (1_u64 << bitWidth(v - 1)) : 1_u64; } constexpr u64 bitFloor(u64 v) { return v ? (1_u64 << topBit(v)) : 0_u64; } constexpr bool hasSingleBit(u64 v) { return (v > 0) and ((v & (v - 1)) == 0); } constexpr u64 bitMask(int bitWidth) { return (bitWidth == 64 ? ~0_u64 : (1_u64 << bitWidth) - 1); } constexpr u64 bitMask(int start, int end) { return bitMask(end - start) << start; } constexpr int popCount(u64 v) { return v ? __builtin_popcountll(v) : 0; } constexpr bool popParity(u64 v) { return v > 0 and __builtin_parity(v) == 1; } template struct Fix : F { constexpr Fix(F&& f) : F{std::forward(f)} {} template constexpr auto operator()(Args&&... args) const { return F::operator()(*this, std::forward(args)...); } }; class irange { private: struct itr { constexpr itr(i64 start = 0, i64 step = 1) : m_cnt{start}, m_step{step} {} constexpr bool operator!=(const itr& it) const { return m_cnt != it.m_cnt; } constexpr i64 operator*() { return m_cnt; } constexpr itr& operator++() { return m_cnt += m_step, *this; } i64 m_cnt, m_step; }; i64 m_start, m_end, m_step; public: static constexpr i64 cnt(i64 start, i64 end, i64 step) { if (step == 0) { return -1; } const i64 d = (step > 0 ? step : -step); const i64 l = (step > 0 ? start : end); const i64 r = (step > 0 ? end : start); i64 n = (r - l) / d + ((r - l) % d ? 1 : 0); if (l >= r) { n = 0; } return n; } constexpr irange(i64 start, i64 end, i64 step = 1) : m_start{start}, m_end{m_start + step * cnt(start, end, step)}, m_step{step} { assert(step != 0); } constexpr itr begin() const { return itr{m_start, m_step}; } constexpr itr end() const { return itr{m_end, m_step}; } }; constexpr irange rep(i64 end) { return irange(0, end, 1); } constexpr irange per(i64 rend) { return irange(rend - 1, -1, -1); } class Scanner { public: Scanner(Istream& is = std::cin) : m_is{is} { m_is.tie(nullptr)->sync_with_stdio(false); } template T val() { T v; return m_is >> v, v; } template T val(T offset) { return val() - offset; } template Vec vec(int n) { return genVec(n, [&]() { return val(); }); } template Vec vec(int n, T offset) { return genVec(n, [&]() { return val(offset); }); } template Vec> vvec(int n, int m) { return genVec>(n, [&]() { return vec(m); }); } template Vec> vvec(int n, int m, const T offset) { return genVec>(n, [&]() { return vec(m, offset); }); } template auto tup() { return Tup{val()...}; } template auto tup(Args... offsets) { return Tup{val(offsets)...}; } private: Istream& m_is; }; inline Scanner in; class Printer { public: Printer(Ostream& os = std::cout) : m_os{os} { m_os << std::fixed << std::setprecision(15); } template int operator()(const Args&... args) { return dump(args...), 0; } template int ln(const Args&... args) { return dump(args...), m_os << '\n', 0; } template int el(const Args&... args) { return dump(args...), m_os << std::endl, 0; } int YES(bool b = true) { return ln(b ? "YES" : "NO"); } int NO(bool b = true) { return YES(not b); } int Yes(bool b = true) { return ln(b ? "Yes" : "No"); } int No(bool b = true) { return Yes(not b); } private: template void dump(const T& v) { m_os << v; } template void dump(const Vec& vs) { for (int i : rep(vs.size())) { m_os << (i ? " " : ""), dump(vs[i]); } } template void dump(const Vec>& vss) { for (int i : rep(vss.size())) { m_os << (i ? "\n" : ""), dump(vss[i]); } } template int dump(const T& v, const Ts&... args) { return dump(v), m_os << ' ', dump(args...), 0; } Ostream& m_os; }; inline Printer out; template auto ndVec(int const (&szs)[n], const T x = T{}) { if constexpr (i == n) { return x; } else { return std::vector(szs[i], ndVec(szs, x)); } } template inline T binSearch(T ng, T ok, F check) { while (std::abs(ok - ng) > 1) { const T mid = (ok + ng) / 2; (check(mid) ? ok : ng) = mid; } return ok; } template inline T fbinSearch(T ng, T ok, F check, int times) { for (auto _temp_name_0 [[maybe_unused]] : rep(times)) { const T mid = (ok + ng) / 2; (check(mid) ? ok : ng) = mid; } return ok; } template constexpr T clampAdd(T x, T y, T min, T max) { return std::clamp(x + y, min, max); } template constexpr T clampSub(T x, T y, T min, T max) { return std::clamp(x - y, min, max); } template constexpr T clampMul(T x, T y, T min, T max) { if (y < 0) { x = -x, y = -y; } const T xmin = ceilDiv(min, y); const T xmax = floorDiv(max, y); if (x < xmin) { return min; } else if (x > xmax) { return max; } else { return x * y; } } template constexpr T clampDiv(T x, T y, T min, T max) { return std::clamp(floorDiv(x, y), min, max); } template constexpr Pair extgcd(const T a, const T b) // [x,y] -> ax+by=gcd(a,b) { static_assert(std::is_signed_v, "Signed integer is allowed."); assert(a != 0 or b != 0); if (a >= 0 and b >= 0) { if (a < b) { const auto [y, x] = extgcd(b, a); return {x, y}; } if (b == 0) { return {1, 0}; } const auto [x, y] = extgcd(b, a % b); return {y, x - (a / b) * y}; } else { auto [x, y] = extgcd(std::abs(a), std::abs(b)); if (a < 0) { x = -x; } if (b < 0) { y = -y; } return {x, y}; } } template constexpr T inverse(const T a, const T mod) // ax=gcd(a,M) (mod M) { assert(a > 0 and mod > 0); auto [x, y] = extgcd(a, mod); if (x <= 0) { x += mod; } return x; } template class modint { template static U modRef() { static u32 s_mod = 0; return s_mod; } template static U rootRef() { static u32 s_root = 0; return s_root; } template static U max2pRef() { static u32 s_max2p = 0; return s_max2p; } public: static_assert(mod_ <= LIMMAX, "mod(signed int size) only supported!"); static constexpr bool isDynamic() { return (mod_ == 0); } template static constexpr std::enable_if_t mod() { return mod_; } template static std::enable_if_t mod() { return modRef(); } template static constexpr std::enable_if_t root() { return root_; } template static std::enable_if_t root() { return rootRef(); } template static constexpr std::enable_if_t max2p() { return max2p_; } template static std::enable_if_t max2p() { return max2pRef(); } template static void setMod(std::enable_if_t m) { assert(1 <= m and m <= LIMMAX); modRef() = m; sinvRef() = {1, 1}; factRef() = {1, 1}; ifactRef() = {1, 1}; } template static void setRoot(std::enable_if_t r) { rootRef() = r; } template static void setMax2p(std::enable_if_t m) { max2pRef() = m; } constexpr modint() : m_val{0} {} constexpr modint(i64 v) : m_val{normll(v)} {} constexpr void setRaw(u32 v) { m_val = v; } constexpr modint operator-() const { return modint{0} - (*this); } constexpr modint& operator+=(const modint& m) { m_val = norm(m_val + m.val()); return *this; } constexpr modint& operator-=(const modint& m) { m_val = norm(m_val + mod() - m.val()); return *this; } constexpr modint& operator*=(const modint& m) { m_val = normll((i64)m_val * (i64)m.val() % (i64)mod()); return *this; } constexpr modint& operator/=(const modint& m) { return *this *= m.inv(); } constexpr modint operator+(const modint& m) const { auto v = *this; return v += m; } constexpr modint operator-(const modint& m) const { auto v = *this; return v -= m; } constexpr modint operator*(const modint& m) const { auto v = *this; return v *= m; } constexpr modint operator/(const modint& m) const { auto v = *this; return v /= m; } constexpr bool operator==(const modint& m) const { return m_val == m.val(); } constexpr bool operator!=(const modint& m) const { return not(*this == m); } friend Istream& operator>>(Istream& is, modint& m) { i64 v; return is >> v, m = v, is; } friend Ostream& operator<<(Ostream& os, const modint& m) { return os << m.val(); } constexpr u32 val() const { return m_val; } template constexpr modint pow(I n) const { return powerInt(*this, n); } constexpr modint inv() const { return inverse(m_val, mod()); } static modint sinv(u32 n) { auto& is = sinvRef(); for (u32 i = (u32)is.size(); i <= n; i++) { is.push_back(-is[mod() % i] * (mod() / i)); } return is[n]; } static modint fact(u32 n) { auto& fs = factRef(); for (u32 i = (u32)fs.size(); i <= n; i++) { fs.push_back(fs.back() * i); } return fs[n]; } static modint ifact(u32 n) { auto& ifs = ifactRef(); for (u32 i = (u32)ifs.size(); i <= n; i++) { ifs.push_back(ifs.back() * sinv(i)); } return ifs[n]; } static modint perm(int n, int k) { return k > n or k < 0 ? modint{0} : fact(n) * ifact(n - k); } static modint comb(int n, int k) { return k > n or k < 0 ? modint{0} : fact(n) * ifact(n - k) * ifact(k); } private: static Vec& sinvRef() { static Vec is{1, 1}; return is; } static Vec& factRef() { static Vec fs{1, 1}; return fs; } static Vec& ifactRef() { static Vec ifs{1, 1}; return ifs; } static constexpr u32 norm(u32 x) { return x < mod() ? x : x - mod(); } static constexpr u32 normll(i64 x) { return norm(u32(x % (i64)mod() + (i64)mod())); } u32 m_val; }; using modint_1000000007 = modint<1000000007, 5, 1>; using modint_998244353 = modint<998244353, 3, 23>; template using modint_dynamic = modint<0, 0, id>; template class Graph { struct Edge { Edge() = default; Edge(int i, int t, T c) : id{i}, to{t}, cost{c} {} int id; int to; T cost; operator int() const { return to; } }; public: Graph(int n) : m_v{n}, m_edges(n) {} void addEdge(int u, int v, bool bi = false) { assert(0 <= u and u < m_v); assert(0 <= v and v < m_v); m_edges[u].emplace_back(m_e, v, 1); if (bi) { m_edges[v].emplace_back(m_e, u, 1); } m_e++; } void addEdge(int u, int v, const T& c, bool bi = false) { assert(0 <= u and u < m_v); assert(0 <= v and v < m_v); m_edges[u].emplace_back(m_e, v, c); if (bi) { m_edges[v].emplace_back(m_e, u, c); } m_e++; } const Vec& operator[](const int u) const { assert(0 <= u and u < m_v); return m_edges[u]; } Vec& operator[](const int u) { assert(0 <= u and u < m_v); return m_edges[u]; } int v() const { return m_v; } int e() const { return m_e; } friend Ostream& operator<<(Ostream& os, const Graph& g) { for (int u : rep(g.v())) { for (const auto& [id, v, c] : g[u]) { os << "[" << id << "]: "; os << u << "->" << v << "(" << c << ")\n"; } } return os; } Vec sizes(int root = 0) const { const int N = v(); assert(0 <= root and root < N); Vec ss(N, 1); Fix([&](auto dfs, int u, int p) -> void { for ([[maybe_unused]] const auto& [_temp_name_1, v, c] : m_edges[u]) { if (v == p) { continue; } dfs(v, u); ss[u] += ss[v]; } })(root, -1); return ss; } Vec depths(int root = 0) const { const int N = v(); assert(0 <= root and root < N); Vec ds(N, 0); Fix([&](auto dfs, int u, int p) -> void { for ([[maybe_unused]] const auto& [_temp_name_2, v, c] : m_edges[u]) { if (v == p) { continue; } ds[v] = ds[u] + c; dfs(v, u); } })(root, -1); return ds; } Vec parents(int root = 0) const { const int N = v(); assert(0 <= root and root < N); Vec ps(N, -1); Fix([&](auto dfs, int u, int p) -> void { for ([[maybe_unused]] const auto& [_temp_name_3, v, c] : m_edges[u]) { if (v == p) { continue; } ps[v] = u; dfs(v, u); } })(root, -1); return ps; } private: int m_v; int m_e = 0; Vec> m_edges; }; class LevelAncestor { public: template LevelAncestor(const Graph& g, int r = 0) : m_v(g.v()), m_ds(m_v, 0), m_ps(m_v) { Fix([&](auto dfs, int u, int p) -> void { for (int k = 1; (1 << k) <= m_ds[u]; k++) { m_ps[u].push_back(m_ps[m_ps[u][k - 1]][k - 1]); } for (int v : g[u]) { if (v == p) { continue; } m_ds[v] = m_ds[u] + 1; m_ps[v].push_back(u); dfs(v, u); } })(r, -1); }; int lca(int u, int v) const { assert(0 <= u and u < m_v); assert(0 <= v and v < m_v); if (m_ds[u] > m_ds[v]) { std::swap(u, v); } v = (*this)(v, m_ds[v] - m_ds[u]); if (u == v) { return u; } while (true) { if (m_ps[u][0] == m_ps[v][0]) { return m_ps[u][0]; } for (int i = m_ps[u].size() - 1; i >= 0; i--) { const int nu = m_ps[u][i], nv = m_ps[v][i]; if (nu != nv) { u = nu, v = nv; break; } } } } int operator()(int v, int d) const { assert(0 <= v and v < m_v); for (int k = (int)bitWidth(d); k >= 0; k--) { if (isBitOn(d, k)) { v = m_ps[v][k]; } } return v; } private: int m_v; Vec m_ds; Vec> m_ps; }; int main() { const auto [N, Q] = in.tup(); Graph g(N); for (auto _temp_name_4 [[maybe_unused]] : rep(N - 1)) { const auto [a, b] = in.tup(1, 1); g.addEdge(a, b, true); } const auto ds = g.depths(); const auto ss = g.sizes(); LevelAncestor la(g); for (auto _temp_name_5 [[maybe_unused]] : rep(Q)) { auto [s, t] = in.tup(1, 1); if (ds[s] < ds[t]) { std::swap(s, t); } const auto l = la.lca(s, t); int D = ds[s] + ds[t] - ds[l] * 2; if (D % 2 == 1) { out.ln(0); } else { const int R = D / 2; const int c = la(s, R); const int ns = la(s, ds[s] - ds[l] - 1); int ans = ss[c] - ss[ns]; if (ds[l] + R == ds[s]) { const int nt = la(t, R - 1); ans -= ss[nt]; ans += N - ss[c]; } out.ln(ans); } } return 0; }