#include #ifdef _MSC_VER # include #else # include #endif #include #include namespace suisen { // ! utility template using constraints_t = std::enable_if_t, std::nullptr_t>; template constexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) { if constexpr (cond_v) { return std::forward(then); } else { return std::forward(or_else); } } // ! function template using is_same_as_invoke_result = std::is_same, ReturnType>; template using is_uni_op = is_same_as_invoke_result; template using is_bin_op = is_same_as_invoke_result; template using is_comparator = std::is_same, bool>; // ! integral template >> constexpr int bit_num = std::numeric_limits>::digits; template struct is_nbit { static constexpr bool value = bit_num == n; }; template static constexpr bool is_nbit_v = is_nbit::value; // ? template struct safely_multipliable {}; template <> struct safely_multipliable { using type = long long; }; template <> struct safely_multipliable { using type = __int128_t; }; template <> struct safely_multipliable { using type = unsigned long long; }; template <> struct safely_multipliable { using type = __uint128_t; }; template <> struct safely_multipliable { using type = __uint128_t; }; template <> struct safely_multipliable { using type = float; }; template <> struct safely_multipliable { using type = double; }; template <> struct safely_multipliable { using type = long double; }; template using safely_multipliable_t = typename safely_multipliable::type; template struct rec_value_type { using type = T; }; template struct rec_value_type> { using type = typename rec_value_type::type; }; template using rec_value_type_t = typename rec_value_type::type; } // namespace suisen // ! type aliases using i128 = __int128_t; using u128 = __uint128_t; template using pq_greater = std::priority_queue, std::greater>; // ! macros (internal) #define DETAIL_OVERLOAD2(_1,_2,name,...) name #define DETAIL_OVERLOAD3(_1,_2,_3,name,...) name #define DETAIL_OVERLOAD4(_1,_2,_3,_4,name,...) name #define DETAIL_REP4(i,l,r,s) for(std::remove_reference_t>i=(l);i<(r);i+=(s)) #define DETAIL_REP3(i,l,r) DETAIL_REP4(i,l,r,1) #define DETAIL_REP2(i,n) DETAIL_REP3(i,0,n) #define DETAIL_REPINF3(i,l,s) for(std::remove_reference_t>i=(l);;i+=(s)) #define DETAIL_REPINF2(i,l) DETAIL_REPINF3(i,l,1) #define DETAIL_REPINF1(i) DETAIL_REPINF2(i,0) #define DETAIL_RREP4(i,l,r,s) for(std::remove_reference_t>i=(l)+fld((r)-(l)-1,s)*(s);i>=(l);i-=(s)) #define DETAIL_RREP3(i,l,r) DETAIL_RREP4(i,l,r,1) #define DETAIL_RREP2(i,n) DETAIL_RREP3(i,0,n) #define DETAIL_CAT_I(a, b) a##b #define DETAIL_CAT(a, b) DETAIL_CAT_I(a, b) #define DETAIL_UNIQVAR(tag) DETAIL_CAT(tag, __LINE__) // ! macros #define REP(...) DETAIL_OVERLOAD4(__VA_ARGS__, DETAIL_REP4 , DETAIL_REP3 , DETAIL_REP2 )(__VA_ARGS__) #define RREP(...) DETAIL_OVERLOAD4(__VA_ARGS__, DETAIL_RREP4 , DETAIL_RREP3 , DETAIL_RREP2 )(__VA_ARGS__) #define REPINF(...) DETAIL_OVERLOAD3(__VA_ARGS__, DETAIL_REPINF3, DETAIL_REPINF2, DETAIL_REPINF1)(__VA_ARGS__) #define LOOP(n) for (std::remove_reference_t> DETAIL_UNIQVAR(loop_variable) = n; DETAIL_UNIQVAR(loop_variable) --> 0;) #define ALL(iterable) std::begin(iterable), std::end(iterable) #define INPUT(type, ...) type __VA_ARGS__; read(__VA_ARGS__) // ! debug #ifdef LOCAL # define debug(...) debug_internal(#__VA_ARGS__, __VA_ARGS__) template void debug_internal(const char* s, T&& first, Args&&... args) { constexpr const char* prefix = "[\033[32mDEBUG\033[m] "; constexpr const char* open_brakets = sizeof...(args) == 0 ? "" : "("; constexpr const char* close_brakets = sizeof...(args) == 0 ? "" : ")"; std::cerr << prefix << open_brakets << s << close_brakets << ": " << open_brakets << std::forward(first); ((std::cerr << ", " << std::forward(args)), ...); std::cerr << close_brakets << "\n"; } #else # define debug(...) void(0) #endif // ! I/O utilities // __int128_t std::ostream& operator<<(std::ostream& dest, __int128_t value) { std::ostream::sentry s(dest); if (s) { __uint128_t tmp = value < 0 ? -value : value; char buffer[128]; char* d = std::end(buffer); do { --d; *d = "0123456789"[tmp % 10]; tmp /= 10; } while (tmp != 0); if (value < 0) { --d; *d = '-'; } int len = std::end(buffer) - d; if (dest.rdbuf()->sputn(d, len) != len) { dest.setstate(std::ios_base::badbit); } } return dest; } // __uint128_t std::ostream& operator<<(std::ostream& dest, __uint128_t value) { std::ostream::sentry s(dest); if (s) { char buffer[128]; char* d = std::end(buffer); do { --d; *d = "0123456789"[value % 10]; value /= 10; } while (value != 0); int len = std::end(buffer) - d; if (dest.rdbuf()->sputn(d, len) != len) { dest.setstate(std::ios_base::badbit); } } return dest; } // pair template std::ostream& operator<<(std::ostream& out, const std::pair& a) { return out << a.first << ' ' << a.second; } // tuple template std::ostream& operator<<(std::ostream& out, const std::tuple& a) { if constexpr (N >= std::tuple_size_v>) return out; else { out << std::get(a); if constexpr (N + 1 < std::tuple_size_v>) out << ' '; return operator<<(out, a); } } // vector template std::ostream& operator<<(std::ostream& out, const std::vector& a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } // array template std::ostream& operator<<(std::ostream& out, const std::array& a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } inline void print() { std::cout << '\n'; } template inline void print(const Head& head, const Tail &...tails) { std::cout << head; if (sizeof...(tails)) std::cout << ' '; print(tails...); } template auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(std::cout << *v.begin(), void()) { for (auto it = v.begin(); it != v.end();) { std::cout << *it; if (++it != v.end()) std::cout << sep; } std::cout << end; } __int128_t stoi128(const std::string& s) { __int128_t ret = 0; for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0'; if (s[0] == '-') ret = -ret; return ret; } __uint128_t stou128(const std::string& s) { __uint128_t ret = 0; for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0'; return ret; } // __int128_t std::istream& operator>>(std::istream& in, __int128_t& v) { std::string s; in >> s; v = stoi128(s); return in; } // __uint128_t std::istream& operator>>(std::istream& in, __uint128_t& v) { std::string s; in >> s; v = stou128(s); return in; } // pair template std::istream& operator>>(std::istream& in, std::pair& a) { return in >> a.first >> a.second; } // tuple template std::istream& operator>>(std::istream& in, std::tuple& a) { if constexpr (N >= std::tuple_size_v>) return in; else return operator>>(in >> std::get(a), a); } // vector template std::istream& operator>>(std::istream& in, std::vector& a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } // array template std::istream& operator>>(std::istream& in, std::array& a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } template void read(Args &...args) { (std::cin >> ... >> args); } // ! integral utilities // Returns pow(-1, n) template constexpr inline int pow_m1(T n) { return -(n & 1) | 1; } // Returns pow(-1, n) template <> constexpr inline int pow_m1(bool n) { return -int(n) | 1; } // Returns floor(x / y) template constexpr inline T fld(const T x, const T y) { return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y; } template constexpr inline T cld(const T x, const T y) { return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y; } template >, std::nullptr_t> = nullptr> __attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u32(x); } template , std::nullptr_t> = nullptr> __attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u64(x); } template >, std::nullptr_t> = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num; } template , std::nullptr_t> = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clzll(x) : suisen::bit_num; } template >, std::nullptr_t> = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num; } template , std::nullptr_t> = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctzll(x) : suisen::bit_num; } template constexpr inline int floor_log2(const T x) { return suisen::bit_num - 1 - count_lz(x); } template constexpr inline int ceil_log2(const T x) { return floor_log2(x) + ((x & -x) != x); } template constexpr inline int kth_bit(const T x, const unsigned int k) { return (x >> k) & 1; } template constexpr inline int parity(const T x) { return popcount(x) & 1; } // ! container template auto priqueue_comp(const Comparator comparator) { return std::priority_queue, Comparator>(comparator); } template void sort_unique_erase(Container& a) { std::sort(a.begin(), a.end()); a.erase(std::unique(a.begin(), a.end()), a.end()); } template auto foreach_adjacent_values(InputIterator first, InputIterator last, BiConsumer f) -> decltype(f(*first++, *last), void()) { if (first != last) for (auto itr = first, itl = itr++; itr != last; itl = itr++) f(*itl, *itr); } template auto foreach_adjacent_values(Container &&c, BiConsumer f) -> decltype(c.begin(), c.end(), void()) { foreach_adjacent_values(c.begin(), c.end(), f); } // ! other utilities // x <- min(x, y). returns true iff `x` has chenged. template inline bool chmin(T& x, const T& y) { return y >= x ? false : (x = y, true); } // x <- max(x, y). returns true iff `x` has chenged. template inline bool chmax(T& x, const T& y) { return y <= x ? false : (x = y, true); } template , std::nullptr_t> = nullptr> std::string bin(T val, int bit_num = -1) { std::string res; if (bit_num != -1) { for (int bit = bit_num; bit-- > 0;) res += '0' + ((val >> bit) & 1); } else { for (; val; val >>= 1) res += '0' + (val & 1); std::reverse(res.begin(), res.end()); } return res; } template , std::nullptr_t> = nullptr> std::vector digits_low_to_high(T val, T base = 10) { std::vector res; for (; val; val /= base) res.push_back(val % base); if (res.empty()) res.push_back(T{ 0 }); return res; } template , std::nullptr_t> = nullptr> std::vector digits_high_to_low(T val, T base = 10) { auto res = digits_low_to_high(val, base); std::reverse(res.begin(), res.end()); return res; } template std::string join(const std::vector& v, const std::string& sep, const std::string& end) { std::ostringstream ss; for (auto it = v.begin(); it != v.end();) { ss << *it; if (++it != v.end()) ss << sep; } ss << end; return ss.str(); } template auto transform_to_vector(const Func &f, const Seq &s) { std::vector> v; v.reserve(std::size(s)), std::transform(std::begin(s), std::end(s), std::back_inserter(v), f); return v; } template auto copy_to_vector(const Seq &s) { std::vector v; v.reserve(std::size(s)), std::copy(std::begin(s), std::end(s), std::back_inserter(v)); return v; } template Seq concat(Seq s, const Seq &t) { s.reserve(std::size(s) + std::size(t)); std::copy(std::begin(t), std::end(t), std::back_inserter(s)); return s; } template std::vector split(const Seq s, typename Seq::value_type delim) { std::vector res; for (auto itl = std::begin(s), itr = itl;; itl = ++itr) { while (itr != std::end(s) and *itr != delim) ++itr; res.emplace_back(itl, itr); if (itr == std::end(s)) return res; } } int digit_to_int(char c) { return c - '0'; } int lowercase_to_int(char c) { return c - 'a'; } int uppercase_to_int(char c) { return c - 'A'; } std::vector digit_str_to_ints(const std::string &s) { return transform_to_vector(digit_to_int, s); } std::vector lowercase_str_to_ints(const std::string &s) { return transform_to_vector(lowercase_to_int, s); } std::vector uppercase_str_to_ints(const std::string &s) { return transform_to_vector(uppercase_to_int, s); } const std::string Yes = "Yes", No = "No", YES = "YES", NO = "NO"; namespace suisen {} using namespace suisen; using namespace std; struct io_setup { io_setup(int precision = 20) { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(precision); } } io_setup_ {}; // ! code from here #include using mint = atcoder::modint998244353; namespace atcoder { std::istream& operator>>(std::istream& in, mint& a) { long long e; in >> e; a = e; return in; } std::ostream& operator<<(std::ostream& out, const mint& a) { out << a.val(); return out; } } // namespace atcoder #include #include namespace suisen { template struct Affine { T a, b; Affine(const T &a = 1, const T &b = 0) : a(a), b(b) {} static Affine id() { return Affine{}; } static Affine compose(const Affine& f, const Affine& g) { return f.compose(g); } Affine compose(const Affine& g) const { return { a * g.a, affine(g.b) }; } template U affine(const T &x) const { return U(a) * x + b; } T operator()(const T &x) const { return affine(x); } Affine operator+() const { return *this; } Affine operator-() const { return { -a, -b }; } Affine& operator++() { ++b; return *this; } Affine& operator--() { --b; return *this; } Affine operator++(int) { Affine f(*this); ++(*this); return f; } Affine operator--(int) { Affine f(*this); --(*this); return f; } Affine& operator+=(const T& c) { b += c; return *this; } Affine& operator-=(const T& c) { b -= c; return *this; } friend Affine operator+(Affine f, const T &c) { f += c; return f; } friend Affine operator-(Affine f, const T &c) { f -= c; return f; } Affine& operator+=(const Affine &g) { a += g.a, b += g.b; return *this; } Affine& operator-=(const Affine &g) { a -= g.a, b -= g.b; return *this; } friend Affine operator+(Affine f, const Affine &g) { f += g; return f; } friend Affine operator-(Affine f, const Affine &g) { f -= g; return f; } friend bool operator==(const Affine &f, const Affine &g) { return f.a == g.a and f.b == g.b; } friend bool operator!=(const Affine &f, const Affine &g) { return not (f == g); } friend bool operator< (const Affine &f, const Affine &g) { return f.a < g.a or (f.a == g.a and f.b < g.b); } friend bool operator<=(const Affine &f, const Affine &g) { return not (g < f); } friend bool operator> (const Affine &f, const Affine &g) { return g < f; } friend bool operator>=(const Affine &f, const Affine &g) { return not (f < g); } template operator std::pair() { return std::pair{ a, b }; } template operator std::tuple() { return std::tuple{ a, b }; } friend std::istream& operator<<(std::istream& in, Affine &f) { return in >> f.a >> f.b; } friend std::ostream& operator>>(std::ostream& out, const Affine &f) { return out << f.a << ' ' << f.b; } }; } // namespace suisen #include #include namespace suisen { template struct CommutativeDualSegmentTree { CommutativeDualSegmentTree() {} CommutativeDualSegmentTree(std::vector&& a) : n(a.size()), m(ceil_pow2(a.size())), data(std::move(a)), lazy(m, id()) {} CommutativeDualSegmentTree(const std::vector& a) : CommutativeDualSegmentTree(std::vector(a)) {} CommutativeDualSegmentTree(int n, const T& fill_value) : CommutativeDualSegmentTree(std::vector(n, fill_value)) {} T operator[](int i) const { assert(0 <= i and i < n); T res = data[i]; for (i = (i + m) >> 1; i; i >>= 1) res = mapping(lazy[i], res); return res; } T get(int i) const { return (*this)[i]; } void apply(int l, int r, const F& f) { assert(0 <= l and r <= n); for (l += m, r += m; l < r; l >>= 1, r >>= 1) { if (l & 1) apply(l++, f); if (r & 1) apply(--r, f); } } protected: int n, m; std::vector data; std::vector lazy; void apply(int k, const F& f) { if (k < m) { lazy[k] = composition(f, lazy[k]); } else if (k - m < n) { data[k - m] = mapping(f, data[k - m]); } } private: static int ceil_pow2(int n) { int m = 1; while (m < n) m <<= 1; return m; } }; } // namespace suisen namespace suisen { template struct DualSegmentTree : public CommutativeDualSegmentTree { using base_type = CommutativeDualSegmentTree; using base_type::base_type; void apply(int l, int r, const F& f) { push(l, r); base_type::apply(l, r, f); } private: void push(int k) { base_type::apply(2 * k, this->lazy[k]), base_type::apply(2 * k + 1, this->lazy[k]); this->lazy[k] = id(); } void push(int l, int r) { const int log = __builtin_ctz(this->m); l += this->m, r += this->m; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } } }; template DualSegmentTree(int, T)->DualSegmentTree; template DualSegmentTree(std::vector)->DualSegmentTree; } // namespace suisen using S = mint; using F = Affine; S mapping(F f, S x) { return f(x); } F composition(F f, F g) { return Affine::compose(f, g); } F id() { return Affine::id(); } namespace suisen { class HeavyLightDecomposition { public: template using is_point_update_query = std::is_invocable; template using is_range_update_query = std::is_invocable; template using is_point_get_query = std::is_same, T>; template using is_range_fold_query = std::is_same, T>; using Graph = std::vector>; HeavyLightDecomposition() = default; HeavyLightDecomposition(Graph &g) : n(g.size()), visit(n), leave(n), head(n), ord(n), siz(n), par(n, -1), dep(n, 0) { for (int i = 0; i < n; ++i) if (par[i] < 0) dfs(g, i, -1); int time = 0; for (int i = 0; i < n; ++i) if (par[i] < 0) hld(g, i, -1, time); } int size() const { return n; } int lca(int u, int v) const { for (;; v = par[head[v]]) { if (visit[u] > visit[v]) std::swap(u, v); if (head[u] == head[v]) return u; } } int la(int u, int k, int default_value = -1) const { if (k < 0) return default_value; while (u >= 0) { int h = head[u]; if (visit[u] - k >= visit[h]) return ord[visit[u] - k]; k -= visit[u] - visit[h] + 1; u = par[h]; } return default_value; } int jump(int u, int v, int d, int default_value = -1) const { if (d < 0) return default_value; const int w = lca(u, v); int uw = dep[u] - dep[w]; if (d <= uw) return la(u, d); int vw = dep[v] - dep[w]; return d <= uw + vw ? la(v, (uw + vw) - d) : default_value; } int dist(int u, int v) const { return dep[u] + dep[v] - 2 * dep[lca(u, v)]; } template , is_bin_op> = nullptr> T fold_path(int u, int v, T identity, F bin_op, Q fold_query, bool is_edge_query = false) const { T res = identity; for (;; v = par[head[v]]) { if (visit[u] > visit[v]) std::swap(u, v); if (head[u] == head[v]) break; res = bin_op(fold_query(visit[head[v]], visit[v] + 1), res); } return bin_op(fold_query(visit[u] + is_edge_query, visit[v] + 1), res); } template < typename T, typename Q1, typename Q2, typename F, constraints_t, is_range_fold_query, is_bin_op> = nullptr > T fold_path_noncommutative(int u, int v, T identity, F bin_op, Q1 fold_query, Q2 fold_query_rev, bool is_edge_query = false) const { T res_u = identity, res_v = identity; // a := lca(u, v) // res = fold(u -> a) + fold(a -> v) while (head[u] != head[v]) { if (visit[u] < visit[v]) { // a -> v res_v = bin_op(fold_query(visit[head[v]], visit[v] + 1), res_v); v = par[head[v]]; } else { // u -> a res_u = bin_op(res_u, fold_query_rev(visit[head[u]], visit[u] + 1)); u = par[head[u]]; } } if (visit[u] < visit[v]) { // a = u res_v = bin_op(fold_query(visit[u] + is_edge_query, visit[v] + 1), res_v); } else { // a = v res_u = bin_op(res_u, fold_query_rev(visit[v] + is_edge_query, visit[u] + 1)); } return bin_op(res_u, res_v); } template > = nullptr> void update_path(int u, int v, Q update_query, bool is_edge_query = false) const { for (;; v = par[head[v]]) { if (visit[u] > visit[v]) std::swap(u, v); if (head[u] == head[v]) break; update_query(visit[head[v]], visit[v] + 1); } update_query(visit[u] + is_edge_query, visit[v] + 1); } template > = nullptr> T fold_subtree(int u, Q fold_query, bool is_edge_query = false) const { return fold_query(visit[u] + is_edge_query, leave[u]); } template > = nullptr> void update_subtree(int u, Q update_query, bool is_edge_query = false) const { update_query(visit[u] + is_edge_query, leave[u]); } template > = nullptr> T get_point(int u, Q get_query) const { return get_query(visit[u]); } template > = nullptr> void update_point(int u, Q update_query) const { update_query(visit[u]); } std::vector inv_ids() const { std::vector inv(n); for (int i = 0; i < n; ++i) inv[visit[i]] = i; return inv; } int get_visit_time(int u) const { return visit[u]; } int get_leave_time(int u) const { return leave[u]; } int get_head(int u) const { return head[u]; } int get_kth_visited(int k) const { return ord[k]; } int get_subtree_size(int u) const { return siz[u]; } int get_parent(int u) const { return par[u]; } int get_depth(int u) const { return dep[u]; } std::vector get_roots() const { std::vector res; for (int i = 0; i < n; ++i) if (par[i] < 0) res.push_back(i); return res; } private: int n; std::vector visit, leave, head, ord, siz, par, dep; int dfs(Graph &g, int u, int p) { par[u] = p; siz[u] = 1; int max_size = 0; for (int &v : g[u]) { if (v == p) continue; dep[v] = dep[u] + 1; siz[u] += dfs(g, v, u); if (max_size < siz[v]) { max_size = siz[v]; std::swap(g[u].front(), v); } } return siz[u]; } void hld(Graph &g, int u, int p, int &time) { visit[u] = time, ord[time] = u, ++time; head[u] = p >= 0 and g[p].front() == u ? head[p] : u; for (int v : g[u]) { if (v != p) hld(g, v, u, time); } leave[u] = time; } }; } // namespace suisen int main() { int n, q; read(n, q); vector> g(n); LOOP(n - 1) { int u, v; read(u, v); --u, --v; g[u].push_back(v); g[v].push_back(u); } vector x(n); read(x); vector par(n, -1); { auto dfs = [&](auto dfs, int u) -> void { for (int v : g[u]) { par[v] = u; g[v].erase(find(ALL(g[v]), u)); dfs(dfs, v); } }; dfs(dfs, 0); } HeavyLightDecomposition hld(g); vector inv_ids = hld.inv_ids(); // REP(i, n) { // sort(ALL(g[i]), [&](int u, int v) { return inv_ids[u] < inv_ids[v]; }); // } const int B = ::sqrt(n); auto is_large = [&](int i) { return int(g[i].size()) >= B; }; vector idx(n); vector vs1, vs2; vector mark(n, false); vector from(n, -1); { int num = 0; REP(i, n) if (is_large(i)) { from[i] = num; for (int j : g[i]) { mark[j] = true; idx[j] = vs1.size(); vs1.push_back(j); } num += g[i].size(); } } vector mark_cnt(n); vector mark_vs; vector ll(n), lr(n), sl(n), sr(n); vector lvs; { auto dfs = [&](auto dfs, int u) -> void { mark_cnt[u] = mark_vs.size(); ll[u] = lvs.size(); sl[u] = vs2.size(); if (not mark[u]) { idx[u] = vs2.size(); vs2.push_back(u); } else { mark_vs.push_back(u); } if (is_large(u)) { lvs.push_back(u); } for (int v : g[u]) dfs(dfs, v); lr[u] = lvs.size(); sr[u] = vs2.size(); }; dfs(dfs, 0); } vector d1, d2; for (int v : vs1) d1.push_back(x[v]); for (int v : vs2) d2.push_back(x[v]); DualSegmentTree seg1(d1), seg2(d2); LOOP(q) { int qt; read(qt); if (qt == 1) { int v; read(v); --v; if (mark[v]) { print(seg1.get(idx[v])); } else { print(seg2.get(idx[v])); } } else if (qt == 2) { int v, k; mint c, d; read(v, k, c, d); --v; for (int x : { par[v], v }) if (x != -1) { if (mark[x]) { seg1.apply(idx[x], idx[x] + 1, { c, d }); } else { seg2.apply(idx[x], idx[x] + 1, { c, d }); } } if (is_large(v)) { seg1.apply(from[v], from[v] + int(g[v].size()), { c, d }); } else { for (int x : g[v]) { seg2.apply(idx[x], idx[x] + 1, { c, d }); } } } else if (qt == 3) { int v; mint c, d; read(v, c, d); --v; seg2.apply(sl[v], sr[v], { c, d }); REP(i, ll[v], lr[v]) { int x = lvs[i]; seg1.apply(from[x], from[x] + int(g[x].size()), { c, d }); } if (mark[v]) { seg1.apply(idx[v], idx[v] + 1, { c, d }); } } else { int u, v; mint c, d; read(u, v, c, d); --u, --v; hld.update_path(u, v, [&](int l, int r) { int off_l = mark_cnt[hld.get_kth_visited(l)]; int off_r = r == n ? mark_vs.size() : mark_cnt[hld.get_kth_visited(r)]; REP(i, off_l, off_r) { int x = mark_vs[i]; seg1.apply(idx[x], idx[x] + 1, { c, d }); } seg2.apply(l - off_l, r - off_r, { c, d }); }); } } return 0; }