#include using namespace std; #include using namespace atcoder; using ll = long long; using VI = vector; using VVI = vector; using VL = vector; using VVL = vector; using VD = vector; using VVD = vector; using VS = vector; using P = pair; using VP = vector

; #define rep(i, n) for (ll i = 0; i < ll(n); i++) #define out(x) cout << x << endl #define dout(x) cout << fixed << setprecision(10) << x << endl #define all(a) (a).begin(),(a).end() #define rall(a) (a).rbegin(),(a).rend() #define sz(x) (int)(x.size()) #define re0 return 0 #define pcnt __builtin_popcountll template inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } constexpr int inf = 1e9; constexpr ll INF = 1e18; //using mint = modint1000000007; //using mint = modint998244353; int di[4] = {1,0,-1,0}; int dj[4] = {0,1,0,-1}; using mint = modint; // https://youtu.be/ylWYSurx10A?t=2352 template struct Matrix { int h, w; vector> d; Matrix() {} Matrix(int h, int w, T val=0): h(h), w(w), d(h, vector(w,val)) {} Matrix& unit() { assert(h == w); rep(i,h) d[i][i] = 1; return *this; } const vector& operator[](int i) const { return d[i];} vector& operator[](int i) { return d[i];} Matrix operator*(const Matrix& a) const { assert(w == a.h); Matrix r(h, a.w); rep(i,h)rep(k,w)rep(j,a.w) { r[i][j] += d[i][k]*a[k][j]; } return r; } Matrix pow(long long t) const { assert(h == w); if (!t) return Matrix(h,h).unit(); if (t == 1) return *this; Matrix r = pow(t>>1); r = r*r; if (t&1) r = r*(*this); return r; } // https://youtu.be/-j02o6__jgs?t=11273 /* mint only mint det() { assert(h == w); mint res = 1; rep(k,h) { for (int i = k; i < h; ++i) { if (d[i][k] == 0) continue; if (i != k) { swap(d[i],d[k]); res = -res; } } if (d[k][k] == 0) return 0; res *= d[k][k]; mint inv = mint(1)/d[k][k]; rep(j,h) d[k][j] *= inv; for (int i = k+1; i < h; ++i) { mint c = d[i][k]; for (int j = k; j < h; ++j) d[i][j] -= d[k][j]*c; } } return res; } //*/ }; int main(){ ll p,q,r,k; cin >> p >> q >> r >> k; mint::set_mod(10); Matrix mat(3,3,0); mat[0][0] = 1; mat[0][1] = 1; mat[0][2] = 1; mat[1][0] = 1; mat[2][1] = 1; mat = mat.pow(k-3); mint ans = r*mat[0][0]; ans += q*mat[0][1]; ans += p*mat[0][2]; out(ans.val()); }