#ifdef DEBUG #define _GLIBCXX_DEBUG #define CERR( ANSWER ) cerr << ANSWER << endl; #define LIBRARY_SEARCH if( LibrarySearch() != 0 ){ QUIT; }; #else #pragma GCC optimize ( "O3" ) #pragma GCC optimize( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define CERR( ANSWER ) #define LIBRARY_SEARCH #endif #include using namespace std; using uint = unsigned int; using ll = long long; using ull = unsigned long long; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define TYPE_OF( VAR ) decay_t #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE #define CIN( LL , A ) LL A; cin >> A #define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) ) #define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX ) #define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX ) #define GETLINE( A ) string A; getline( cin , A ) #define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- ) #define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES ) #define QUIT return 0 #define COUT( ANSWER ) cout << ( ANSWER ) << "\n" #define RETURN( ANSWER ) COUT( ANSWER ); QUIT #define SET_PRECISION( PRECISION ) cout << fixed << setprecision( PRECISION ) #define DOUBLE( PRECISION , ANSWER ) SET_PRECISION << ( ANSWER ) << "\n"; QUIT template inline T Absolute( const T& a ){ return a > 0 ? a : -a; } template inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : ( a % p ) + p; } #define POWER( ANSWER , ARGUMENT , EXPONENT ) \ static_assert( ! is_same::value && ! is_same::value ); \ TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \ { \ TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ ll ANSWER{ 1 }; \ { \ ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( MODULO + ( ( ARGUMENT ) % MODULO ) ) % MODULO; \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \ static ll ANSWER[CONSTEXPR_LENGTH]; \ static ll ANSWER_INV[CONSTEXPR_LENGTH]; \ static ll INVERSE[CONSTEXPR_LENGTH]; \ { \ ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \ FOREQ( i , 1 , MAX_INDEX ){ \ ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= MODULO; \ } \ ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ FOREQ( i , 2 , MAX_INDEX ){ \ ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = MODULO - ( ( ( MODULO / i ) * INVERSE[MODULO % i] ) % MODULO ) ) %= MODULO; \ } \ } \ // 通常の二分探索その1 // EXPRESSIONがANSWERの狭義単調増加関数の時、EXPRESSION >= TARGETを満たす最小の整数を返す。 // 広義単調増加関数を扱いたい時は等号成立の処理を消して続く>に等号を付ける。 #define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ static_assert( ! is_same::value && ! is_same::value ); \ ll ANSWER; \ { \ ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \ while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \ CERR( VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << "=" << VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ break; \ } else { \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \ } else { \ VARIABLE_FOR_BINARY_SEARCH_L = ANSWER + 1; \ } \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ } \ } \ CERR( VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << ">=0" ); \ } \ // 通常の二分探索その2 // EXPRESSIONがANSWERの狭義単調増加関数の時、EXPRESSION <= TARGETを満たす最大の整数を返す。 // 広義単調増加関数を扱いたい時は等号成立の処理を消して続く<に等号を付ける。 #define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ static_assert( ! is_same::value && ! is_same::value ); \ ll ANSWER; \ { \ ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \ while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \ CERR( VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << "=" << VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ break; \ } else { \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH < 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \ } else { \ VARIABLE_FOR_BINARY_SEARCH_U = ANSWER - 1; \ } \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ } \ } \ CERR( VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << "<=0" ); \ } \ // 通常の二分探索その3 // EXPRESSIONがANSWERの狭義単調減少関数の時、EXPRESSION >= TARGETを満たす最大の整数を返す。 // 広義単調増加関数を扱いたい時は等号成立の処理を消して続く>に等号を付ける。 #define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ static_assert( ! is_same::value && ! is_same::value ); \ ll ANSWER; \ { \ ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \ while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \ CERR( VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << "=" << VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ break; \ } else { \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \ } else { \ VARIABLE_FOR_BINARY_SEARCH_U = ANSWER - 1; \ } \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ } \ } \ CERR( VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << ">=0" ); \ } \ // 通常の二分探索その4 // EXPRESSIONがANSWERの狭義単調減少関数の時、EXPRESSION <= TARGETを満たす最小の整数を返す。 // 広義単調増加関数を扱いたい時は等号成立の処理を消して続く<に等号を付ける。 #define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ static_assert( ! is_same::value && ! is_same::value ); \ ll ANSWER; \ { \ ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \ while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \ CERR( VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << "=" << VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ break; \ } else { \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH < 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \ } else { \ VARIABLE_FOR_BINARY_SEARCH_L = ANSWER + 1; \ } \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ } \ } \ CERR( VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << "<=0" ); \ } \ // 二進法の二分探索 // EXPRESSIONがANSWERの狭義単調増加関数の時、EXPRESSION <= TARGETを満たす最大の整数を返す。 #define BBS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ ll ANSWER = MINIMUM; \ { \ ll VARIABLE_FOR_POWER_FOR_BINARY_SEARCH = 1; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( MAXIMUM ) - ANSWER; \ while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH <= VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ){ \ VARIABLE_FOR_POWER_FOR_BINARY_SEARCH *= 2; \ } \ VARIABLE_FOR_POWER_FOR_BINARY_SEARCH /= 2; \ ll VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH = ANSWER; \ while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH != 0 ){ \ ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH + VARIABLE_FOR_POWER_FOR_BINARY_SEARCH; \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH = ANSWER; \ break; \ } else if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH < 0 ){ \ VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH = ANSWER; \ } \ VARIABLE_FOR_POWER_FOR_BINARY_SEARCH /= 2; \ } \ ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH; \ } \ // 圧縮用 #define TE template #define TY typename #define US using #define ST static #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& int LibrarySearch() { CERR( "ライブラリーを探索しますか?[y/n]" ); CIN( string , reply ); if( reply == "n" ){ CERR( "ライブラリーを探索せずに続行します。" ); CERR( "" ); return 0; } else if( reply != "y" ){ CERR( "y/nのいずれかで答えてください。" ); CERR( "終了します。" ); CERR( "" ); return -1; } CERR( "" ); CERR( "ライブラリーを探索します。" ); CERR( "問題の種類を番号で指定してください;" ); vector problems = { "数に関する問題。" , "配列に関する問題。" , "文字列に関する問題。" , "順列に関する問題。" , "矩形領域に関する問題。" , "グラフに関する問題。" , "格子点に関する問題。" , "ナップサック問題。" }; int problems_size = problems.size(); FOR( i , 0 , problems_size ){ CERR( i << ": " << problems[i] ); } CIN( int , num ); CERR( "" ); if( num < 0 || num >= problems_size ){ cerr << "返答は" << problems_size - 1 << "以下の非負整数にしてください。"; CERR( "終了します。" ); CERR( "" ); return -1; } else if( num == 0 ){ CERR( "入力は1つの数か、1つの数と法を表す数ですか?[y/n/c]" ); cin >> reply; CERR( "" ); if( reply == "y" ){ CERR( "まずは小さい入力の場合を愚直に計算し、OEISで検索しましょう。" ); CERR( "https://oeis.org/?language=japanese" ); CERR( "" ); CERR( "次に出力の定義と等価な式を考察しましょう。" ); CERR( "- 単調ならば、冪乗や階乗を検討しましょう。" ); CERR( "- 定義にp進法が使われていれば、探索アルゴリズムを検討しましょう。" ); CERR( "- 入力が素数に近い場合に規則性があれば、p進付値、p進法、オイラー関数、約数の個数などを検討しましょう。" ); } else if( reply == "n" ){ CERR( "このケースのライブラリー探索は未実装です。" ); } else if( reply == "c" ){ CERR( "終了します。" ); CERR( "" ); return -1; } else { CERR( "y/n/cのいずれかで答えてください。" ); CERR( "終了します。" ); CERR( "" ); return -1; } CERR( "" ); CERR( "マルチテストケースの場合は以下の前計算を検討しましょう;" ); CERR( "素数列挙、約数列挙、サブゴールとなる関係式を満たす解列挙。" ); } else if( num == 3 ){ CERR( "符号の計算は転倒数の計算に帰着させましょう。" ); CERR( "符号と何かの積の和は行列式に帰着させましょう。余因子展開のメモ化再帰でO(N 2^N)です。" ); CERR( "" ); CERR( "1つの順列の転倒数は、" ); CERR( "- O(N^2)が通るなら愚直な二重ループ" ); CERR( "- O(N log_2 N)が必要なら可換群に対するBIT" ); CERR( " \\Mathematics\\Combinatorial\\Permutation" ); CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\BIT" ); CERR( "で計算しましょう。" ); CERR( "" ); CERR( "条件を満たす順列全体をわたる転倒数の総和は、各i > vertex{}; \ const int i_start = e_inv( t_start ); \ const int i_final = e_inv( t_final ); \ vertex.insert( pair( weight[i_start] = unit , i_start ) ); \ INITIALISE_PREV; \ \ while( ! vertex.empty() ){ \ \ auto itr_vertex = vertex.begin(); \ const pair v = *itr_vertex; \ const int& i = v.second; \ \ if( i == i_final ){ \ \ break; \ \ } \ \ const U& u = v.first; \ weight[i] = m_found; \ vertex.erase( itr_vertex ); \ const list > edge_i = E( e( i ) ); \ list > changed_vertex{}; \ \ for( auto itr_edge_i = edge_i.begin() , end_edge_i = edge_i.end() ; itr_edge_i != end_edge_i ; itr_edge_i++ ){ \ \ const int& j = e_inv( itr_edge_i->first ); \ U& weight_j = weight[j]; \ \ if( weight_j != m_found ){ \ \ const U& edge_ij = itr_edge_i->second; \ const U temp = Add( u , edge_ij ); \ assert( edge_ij != m_found && temp != m_found && !( temp < edge_ij ) && temp < m_infty ); \ \ if( weight_j > temp ){ \ \ if( weight_j != m_infty ){ \ \ vertex.erase( pair( weight_j , j ) ); \ \ } \ \ SET_PREV; \ changed_vertex.push_back( pair( weight_j = temp , j ) ); \ \ } \ \ } \ \ } \ \ for( auto itr_changed = changed_vertex.begin() , end_changed = changed_vertex.end() ; itr_changed != end_changed ; itr_changed++ ){ \ \ vertex.insert( *itr_changed ); \ \ } \ \ } \ template > E(const T&) , int size_max> class DijkstraBody { private: int m_size; U m_infty; U m_found; int m_length; map m_memory; vector m_memory_inv; public: inline DijkstraBody( const int& size , const U& infty , const U& found ); U Solve( const T& t_start , const T& t_final ); U Solve( const T& t_start , const T& t_final , list& path ); private: virtual const U& Unit() const = 0; virtual U Add( const U& , const U& ) const = 0; virtual T e( const int& i ); virtual int e_inv( const T& t ); virtual void Reset(); }; // 入力の範囲内で要件 // (1) Eの値の各成分の第2成分が0以上である。 // (2) 2^{31}-1がEの値の各成分の第2成分size_max個以下の和で表せるいかなる数よりも大きい。 // が成り立つ場合にのみサポート。 template > E(const int&) , int size_max> class Dijkstra : public DijkstraBody { public: inline Dijkstra( const int& size ); private: inline const ll& Unit() const; inline ll Add( const ll& , const ll& ) const; inline int e( const int& i ); inline int e_inv( const int& t ); inline void Reset(); }; // 入力の範囲内で要件 // (1) Eの値の各成分の第2成分がe_T()以上である。 // (2) inftyがEの値の各成分の第2成分size_max個以下の和で表せるいかなる項よりも大きい。 // (3) foundがEの値の各成分の第2成分size_max個以下の和で表せず、inftyとも異なる。 // (4) (U,m_U:U^2->U,e_U:1->U)がbool operator<(const U&,const U&)に関して順序モノイドである。 // が成り立つ場合にのみサポート。 template > E(const T&) , int size_max> class MemorisationDijkstra : public DijkstraBody { public: inline MemorisationDijkstra( const int& size , const U& infty = 2147483647 , const U& found = -1 ); private: inline const U& Unit() const; inline U Add( const U& , const U& ) const; }; // 入力の範囲内で要件 // (1) Eの値の各成分の第2成分がe_T()以上である。 // (2) inftyがEの値の各成分の第2成分size_max個以下の和で表せるいかなる項よりも大きい。 // (3) foundがEの値の各成分の第2成分size_max個以下の和で表せず、inftyとも異なる。 // (4) (U,m_U:U^2->U,e_U:1->U)がbool operator<(const U&,const U&)に関して順序モノイドである。 // (5) (enum_T,enum_T_inv)が互いに逆写像である。 // が成り立つ場合にのみサポート。 template > E(const T&) , int size_max , T enum_T(const int&) , int enum_T_inv(const T&)> class EnumerationDijkstra : public DijkstraBody { public: inline EnumerationDijkstra( const int& size , const U& infty = 2147483647 , const U& found = -1 ); private: inline const U& Unit() const; inline U Add( const U& , const U& ) const; inline T e( const int& i ); inline int e_inv( const T& t ); inline void Reset(); }; template > E(const T&) , int size_max> inline DijkstraBody::DijkstraBody( const int& size , const U& infty , const U& found ) : m_size( size ) , m_infty( infty ) , m_found( found ) , m_length() , m_memory() , m_memory_inv() {} template > E(const int&) , int size_max> inline Dijkstra::Dijkstra( const int& size ) : DijkstraBody( size , 2147483647 , -1 ) {} template > E(const T&) , int size_max> inline MemorisationDijkstra::MemorisationDijkstra( const int& size , const U& infty , const U& found ) : DijkstraBody( size , infty , found ) {} template > E(const T&) , int size_max , T enum_T(const int&) , int enum_T_inv(const T&)> inline EnumerationDijkstra::EnumerationDijkstra( const int& size , const U& infty , const U& found ) : DijkstraBody( size , infty , found ) {} template > E(const T&) , int size_max> U DijkstraBody::Solve( const T& t_start , const T& t_final ) { DIJKSTRA_BODY( , ); Reset(); return weight[i_final]; } template > E(const T&) , int size_max> U DijkstraBody::Solve( const T& t_start , const T& t_final , list& path ) { DIJKSTRA_BODY( T prev[size_max] = {} , prev[j] = i ); int i = i_final; while( i != i_start ){ path.push_front( e( i ) ); i = prev[i]; } path.push_front( t_start ); Reset(); return weight[i_final]; } template > E(const int&) , int size_max> inline const ll& Dijkstra::Unit() const { static const ll unit = 0; return unit; } template > E(const T&) , int size_max> inline const U& MemorisationDijkstra::Unit() const { return e_U(); } template > E(const T&) , int size_max , T enum_T(const int&) , int enum_T_inv(const T&)> inline const U& EnumerationDijkstra::Unit() const { return e_U(); } template > E(const int&) , int size_max> inline ll Dijkstra::Add( const ll& u0 , const ll& u1 ) const { return u0 + u1; } template > E(const T&) , int size_max> inline U MemorisationDijkstra::Add( const U& u0 , const U& u1 ) const { return m_U( u0 , u1 ); } template > E(const T&) , int size_max , T enum_T(const int&) , int enum_T_inv(const T&)> inline U EnumerationDijkstra::Add( const U& u0 , const U& u1 ) const { return m_U( u0 , u1 ); } template > E(const T&) , int size_max> T DijkstraBody::e( const int& i ) { assert( i < m_length ); return m_memory_inv[i]; } template > E(const int&) , int size_max> inline int Dijkstra::e( const int& i ) { return i; } template > E(const T&) , int size_max , T enum_T(const int&) , int enum_T_inv(const T&)> inline T EnumerationDijkstra::e( const int& i ) { return enum_T( i ); } template > E(const T&) , int size_max> int DijkstraBody::e_inv( const T& t ) { if( m_memory.count( t ) == 0 ){ assert( m_length < m_size ); m_memory_inv.push_back( t ); return m_memory[t] = m_length++; } return m_memory[t]; } template > E(const int&) , int size_max> inline int Dijkstra::e_inv( const int& t ) { return t; } template > E(const T&) , int size_max , T enum_T(const int&) , int enum_T_inv(const T&)> inline int EnumerationDijkstra::e_inv( const T& t ) { return enum_T_inv( t ); } template > E(const T&) , int size_max> void DijkstraBody::Reset() { m_length = 0; m_memory.clear(); m_memory_inv.clear(); return; } template > E(const int&) , int size_max> inline void Dijkstra::Reset() {} template > E(const T&) , int size_max , T enum_T(const int&) , int enum_T_inv(const T&)> inline void EnumerationDijkstra::Reset() {} #ifdef DEBUG inline CEXPR( int , bound_H_W , 5 ); #else inline CEXPR( int , bound_H_W , 800 ); #endif int H , W , H_minus , W_minus; int A[bound_H_W][bound_H_W]; list,ll> > E( const pair& k ) { list,ll> > edge{}; if( k.first < H ){ FOREQ( di , -1 , 1 ){ FOREQ( dj , -1 , 1 ){ int i_next = k.first + di; int j_next = k.second + dj; if( 1 <= i_next && i_next < H_minus && 0 <= j_next && j_next < W && ( i_next != k.first || j_next != k.second ) ){ int& Aij_next = A[i_next][j_next]; if( Aij_next != -1 ){ edge.push_back( { { i_next , j_next } , Aij_next } ); } } } } if( k.second == W_minus ){ edge.push_back( pair,ll>( { H , 1 } , 0 ) ); } } else if( k.first == H && k.second == 0 ){ FOR( i , 1 , H_minus ){ int& Ai0 = A[i][0]; if( Ai0 != -1 ){ edge.push_back( { { i , 0 } , A[i][0] } ); } } } return edge; } inline ll Add( const ll& u0 , const ll& u1 ) { return u0 + u1; } inline const ll& Zero() { static const ll zero = 0; return zero; } int main() { UNTIE; LIBRARY_SEARCH; SET_ASSERT( H , 3 , bound_H_W ); SET_ASSERT( W , 3 , bound_H_W ); H_minus = H - 1; W_minus = W - 1; CEXPR( int , bound_Aij , 800 ); FOR( i , 1 , H_minus ){ int ( &Ai )[bound_H_W] = A[i]; FOR( j , 0 , W ){ CIN_ASSERT( Aij , -1 , bound_Aij ); assert( Aij != 0 ); Ai[j] = Aij; } } CEXPR( int , infty , bound_H_W * bound_H_W * bound_Aij ); MemorisationDijkstra,ll,Add,Zero,E,bound_H_W * bound_H_W + 2> d{ H * W + 2 }; ll answer = d.Solve( { H , 0 } , { H , 1 } ); RETURN( answer < infty ? answer : -1 ); }